LUFTAUSLÄSSE

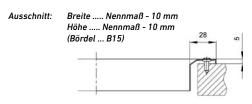
Übersicht Luftauslässe

"	
JR-3	
JR-4	
JR-7	
JR-8	5
LÜFTUNGSGITTER AUS ALUMINIUM "ARS"	
ARS-3	
ARS-4	
ARS-6	
ARS-7	
ARS-13	
ARS-14	
ARS-17	
ARS-18	
ARSF	
Zubehör	28
LÜFTUNGSGITTER AUS VERZINKTEM STAHLBLECH GEEIGNET FÜR ROHREINBAU "SKS…"	
SKS-2	
SKS-3	
SKS-4	
SKS-9	31
LÜETLINGSGITTED AUG ALLIMINILIM GEEIGNET EÜD DECKENMONTAGE SDI. "	2/
LÜFTUNGSGITTER AUS ALUMINIUM GEEIGNET FÜR DECKENMONTAGE "SRL"	
LÜFTUNGSGITTER AUS ALUMINIUM GEEIGNET FÜR DECKENMONTAGE "SRL"	
SRL-1	
GEBOGENE LÜFTUNGSGITTER, WAND/KANALAUSLASS, DÜSENAUSLASS, THEATERAUSLASS	
SRL-1	
SRL-1 GEBOGENE LÜFTUNGSGITTER, WAND/KANALAUSLASS, DÜSENAUSLASS, THEATERAUSLASS ZUBEHÖR FÜR LÜFTUNGSGITTER (GITTERKÄSTEN, SCHIEBESTUTZEN, AUSSCHNITTE, VORMONTAGEN)	32
GEBOGENE LÜFTUNGSGITTER, WAND/KANALAUSLASS, DÜSENAUSLASS, THEATERAUSLASSZUBEHÖR FÜR LÜFTUNGSGITTER (GITTERKÄSTEN, SCHIEBESTUTZEN, AUSSCHNITTE, VORMONTAGEN)	
GEBOGENE LÜFTUNGSGITTER, WAND/KANALAUSLASS, DÜSENAUSLASS, THEATERAUSLASSZUBEHÖR FÜR LÜFTUNGSGITTER (GITTERKÄSTEN, SCHIEBESTUTZEN, AUSSCHNITTE, VORMONTAGEN) DRALLLUFTDURCHLÄSSE	37 35 39 41
GEBOGENE LÜFTUNGSGITTER, WAND/KANALAUSLASS, DÜSENAUSLASS, THEATERAUSLASS ZUBEHÖR FÜR LÜFTUNGSGITTER (GITTERKÄSTEN, SCHIEBESTUTZEN, AUSSCHNITTE, VORMONTAGEN) DRALLLUFTDURCHLÄSSE	37 37 39 41 43
GEBOGENE LÜFTUNGSGITTER, WAND/KANALAUSLASS, DÜSENAUSLASS, THEATERAUSLASS ZUBEHÖR FÜR LÜFTUNGSGITTER (GITTERKÄSTEN, SCHIEBESTUTZEN, AUSSCHNITTE, VORMONTAGEN) DRALLLUFTDURCHLÄSSE PDD-1	37 37 39 41 42 49
GEBOGENE LÜFTUNGSGITTER, WAND/KANALAUSLASS, DÜSENAUSLASS, THEATERAUSLASS ZUBEHÖR FÜR LÜFTUNGSGITTER (GITTERKÄSTEN, SCHIEBESTUTZEN, AUSSCHNITTE, VORMONTAGEN) DRALLLUFTDURCHLÄSSE	32 33 35 41 42 49 60
GEBOGENE LÜFTUNGSGITTER, WAND/KANALAUSLASS, DÜSENAUSLASS, THEATERAUSLASS	32 35 35 41 46 49 60 62
GEBOGENE LÜFTUNGSGITTER, WAND/KANALAUSLASS, DÜSENAUSLASS, THEATERAUSLASS ZUBEHÖR FÜR LÜFTUNGSGITTER (GITTERKÄSTEN, SCHIEBESTUTZEN, AUSSCHNITTE, VORMONTAGEN) DRALLLUFTDURCHLÄSSE	32 35 35 41 46 49 60 62
GEBOGENE LÜFTUNGSGITTER, WAND/KANALAUSLASS, DÜSENAUSLASS, THEATERAUSLASS	32 35 35 41 46 49 60 62
SRL-1 GEBOGENE LÜFTUNGSGITTER, WAND/KANALAUSLASS, DÜSENAUSLASS, THEATERAUSLASS ZUBEHÖR FÜR LÜFTUNGSGITTER (GITTERKÄSTEN, SCHIEBESTUTZEN, AUSSCHNITTE, VORMONTAGEN) DRALLLUFTDURCHLÄSSE PDD-1	32 33 35 41 42 49 60 62 62
SRL-1 GEBOGENE LÜFTUNGSGITTER, WAND/KANALAUSLASS, DÜSENAUSLASS, THEATERAUSLASS ZUBEHÖR FÜR LÜFTUNGSGITTER (GITTERKÄSTEN, SCHIEBESTUTZEN, AUSSCHNITTE, VORMONTAGEN) DRALLLUFTDURCHLÄSSE PDD-1 PDD-2 ODS-5 ODL-7 ODL-11 KDS-1 SCHLITZDURCHLÄSSE LD-13	32 33 35 41 42 49 60 62 71
SRL-1 GEBOGENE LÜFTUNGSGITTER, WAND/KANALAUSLASS, DÜSENAUSLASS, THEATERAUSLASS ZUBEHÖR FÜR LÜFTUNGSGITTER (GITTERKÄSTEN, SCHIEBESTUTZEN, AUSSCHNITTE, VORMONTAGEN) DRALLLUFTDURCHLÄSSE PDD-1 PDD-2 ODS-5 ODL-7 ODL-11 KDS-1 SCHLITZDURCHLÄSSE LD-13	32 33 35 41 42 49 60 62 71
SRL-1 GEBOGENE LÜFTUNGSGITTER, WAND/KANALAUSLASS, DÜSENAUSLASS, THEATERAUSLASS ZUBEHÖR FÜR LÜFTUNGSGITTER (GITTERKÄSTEN, SCHIEBESTUTZEN, AUSSCHNITTE, VORMONTAGEN) DRALLLUFTDURCHLÄSSE PDD-1	32 33 35 41 42 49 60 62 71
GEBOGENE LÜFTUNGSGITTER, WAND/KANALAUSLASS, DÜSENAUSLASS, THEATERAUSLASS	32 33 35 41 42 49 60 62 71
GEBOGENE LÜFTUNGSGITTER, WAND/KANALAUSLASS, DÜSENAUSLASS, THEATERAUSLASS	35 35 39 41 45 66 62 71
GEBOGENE LÜFTUNGSGITTER, WAND/KANALAUSLASS, DÜSENAUSLASS, THEATERAUSLASS	35 35 39 41 45 66 62 71
GEBOGENE LÜFTUNGSGITTER, WAND/KANALAUSLASS, DÜSENAUSLASS, THEATERAUSLASS. ZUBEHÖR FÜR LÜFTUNGSGITTER (GITTERKÄSTEN, SCHIEBESTUTZEN, AUSSCHNITTE, VORMONTAGEN) DRALLLUFTDURCHLÄSSE	35 35 39 41 45 66 62 71
GEBOGENE LÜFTUNGSGITTER, WAND/KANALAUSLASS, DÜSENAUSLASS, THEATERAUSLASS	36 37 38 41 42 49 60 60 71


Lüftungsgitter JR-3/4/7/8

LÜFTUNGSGITTER JR-3

- Lüftungsgitter für Wand- oder Deckenmontage
- Rahmen und Lamellen aus verzinktem Stahlblech
- einzeln einstellbare, WAAGRECHTE Luftlenklamellen
- wahlweise mit sichtbarer oder verdeckter Befestigung
- standardmäßig beschichtet in RAL 9003
- verzinkte Ausführung auf Anfrage

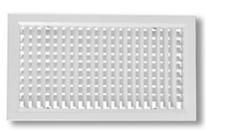

LÜFTUNGSGITTER JR-7

- Lüftungsgitter für Wand- oder Deckenmontage
- Rahmen und Lamellen aus verzinktem Stahlblech
- einzeln einstellbare, **WAAGRECHTE UND SENKRECHTE**
- wahlweise mit sichtbarer oder verdeckter Befestigung
- standardmäßig beschichtet in RAL 9003
- verzinkte Ausführung auf Anfrage

BEFESTIGUNG UND AUSSCHNITTE

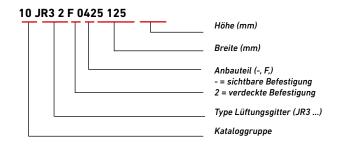

Sichtbare Befestigung

Verdeckte Befestigung (mit Einbaurahmen)

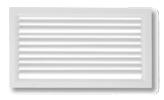


LÜFTUNGSGITTER JR-4

- Lüftungsgitter für Wand- oder Deckenmontage
- Rahmen und Lamellen aus verzinktem Stahlblech
- einzeln einstellbare, **SENKRECHTE** Luftlenklamellen
- wahlweise mit sichtbarer oder verdeckter Befestigung
- standardmäßig beschichtet in RAL 9003
- verzinkte Ausführung auf Anfrage


LÜFTUNGSGITTER JR-8

- Lüftungsgitter für Wand- oder Deckenmontage
- Rahmen und Lamellen aus verzinktem Stahlblech
- einzeln einstellbare, **SENKRECHTE UND WAAGRECHTE** Lamellen
- wahlweise mit sichtbarer oder verdeckter Befestigung
- standardmäßig beschichtet in RAL 9003
- verzinkte Ausführung auf Anfrage


ARTIKELSCHLÜSSEL

Lüftungsgitter JR-3_

WAAGRECHTE LAMELLEN

ZULUFT	Luft	Luftmenge-Schnellauswahl (m³/h)									
(max. Zu	(max. Zuluftmenge in m³/h bei einer Geschwindigkeit von 2 m/s)										
B/H (mm)	75	125	225	325	425	525					
225	50	108	-	-	-						
325	79	166	317	-	-	-					
425	108	223	432	641	-	-					
525	137	274	540	806	1.066	-					
625	158	331	648	965	1.289	1.606					
825	216	446	871	1.296	1.721	2.146					
1025	274	554	1.087	1.627	2.160	2.693					
1225	324	670	1.310	1.951	2.592	3.240					

ABLUFT	Luft	Luftmenge-Schnellauswahl (m³/h)									
(max. Ab	(max. Abluftmenge in m³/h bei einer Geschwindigkeit von 3 m/s)										
B/H (mm)	75	125	225	325	425	525					
225	76	162	-	-	-	-					
325	119	248	475	-	-	-					
425	162	335	648	961	-	-					
525	205	410	810	1.210	1.598	-					
625	238	497	972	1.447	1.933	2.408					
825	324	670	1.307	1.944	2.581	3.218					
1025	410	832	1.631	2.441	3.240	4.039					
1225	486	1.004	1.966	2.927	3.888	4.860					

Lüftungsgitter JR-4_

SENKRECHTE LAMELLEN

ZULUFT	Luft	Luftmenge-Schnellauswahl (m³/h)									
(max.	(max. Zuluftmenge in m³/h bei einer Geschwindigkeit von 2 m/s)										
B/H (mm)	75	125	225	325	425	525					
225	43	101	-	-	-	-					
325	65	144	310	-	-	-					
425	86	194	410	634	-	-					
525	108	245	518	785	1.058	-					
625	130	288	619	943	1.267	1.598					
825	173	389	821	1.253	1.692	2.124					
1025	216	482	1.022	1.570	2.110	2.650					
1225	252	583	1.231	1.879	4.687	3.182					

ABLUFT	Luft	Luftmenge-Schnellauswahl (m³/h)								
(max. Abluftmenge in m³/h bei einer Geschwindigkeit von 3 m/s)										
B/H (mm)	75	125	225	325	425	525				
225	65	151	-	-	-	-				
325	97	216	464	-	-	-				
425	130	292	616	950	-	-				
525	162	367	778	1.177	1.588	-				
625	194	432	929	1.415	1.901	2.398				
825	259	583	1.231	1.879	2.538	3.186				
1025	324	724	1.534	2.354	3.164	3.974				
1225	378	875	1.847	2.819	7.031	4.774				

AUSFÜHRUNGSVARIANTEN FÜR JR-3 UND JR-4:

- LÜFTUNGSGITTER JR-3 UND JR-4 ohne Anbauteil
- LÜFTUNGSGITTER JR-3/F UND JR-4/F Anbauteil F = gegenläufige Lamellen
- LÜFTUNGSGITTER JR-3/2 UND JR-4/2 mit Einbaurahmen für verdeckte Befes tigung der Lüftungsgitter
- Mehrpreis Pulverbeschichtung in RAL nach Wahl

Lüftungsgitter JR-7_

WAAGRECHTE UND SENKRECHTE LAMELLEN

ZULUFT	Luft	Luftmenge-Schnellauswahl (m³/h)								
(max.	(max. Zuluftmenge in m³/h bei einer Geschwindigkeit von 2 m/s)									
B/H (mm)	75	125	225	325	425	525				
225	50	108	-	-	-	-				
325	79	166	317	-	-	-				
425	108	223	432	641	-	-				
525	137	274	540	806	1.066	-				
625	158	331	648	965	1.289	1.606				
825	216	446	871	1.296	1.721	2.146				
1025	274	554	1.087	1.627	2.160	2.693				
1225	324	670	1.310	1.951	2.592	3.240				

ABLUFT	Luf	Luftmenge-Schnellauswahl (m³/h)									
(max.	(max. Abluftmenge in m³/h bei einer Geschwindigkeit von 3 m/s)										
B/H (mm)	75	125	225	325	425	525					
225	76	162	-	-	-	-					
325	119	248	475	-	-	-					
425	162	335	648	961	-						
525	205	410	810	1.210	1.598	-					
625	238	497	972	1.447	1.933	2.408					
825	324	670	1.307	1.944	2.581	3.218					
1025	410	832	1.631	2.441	3.240	4.039					
1225	486	1.004	1.966	2.927	3.888	4.860					

Lüftungsgitter JR-8_

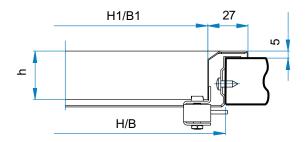
SENKRECHTE UND WAAGRECHTE LAMELLEN

ZULUFT (max.		Luftmenge-Schnellauswahl (m³/h) Zuluftmenge in m³/h bei einer Geschwindigkeit von 2 m/s)								
B/H (mm)	75	125	225	325	425	525				
225	43	101	-	-	-	-				
325	65	144	310	-	-	-				
425	86	194	410	634	-	-				
525	108	245	518	785	1.058	-				
625	130	288	619	943	1.267	1.598				
825	173	389	821	1.253	1.692	2.124				
1025	216	482	1.022	1.570	2.110	2.650				
1225	252	583	1.231	1.879	4.687	3.182				

ABLUFT	Luft	Luftmenge-Schnellauswahl (m³/h)								
(max.	(max. Abluftmenge in m³/h bei einer Geschwindigkeit von 3 m/s)									
B/H (mm)	75	125	225	325	425	525				
225	65	151	-	-	-	-				
325	97	216	464	-	-	-				
425	130	292	616	950	-	-				
525	162	367	778	1.177	1.588	-				
625	194	432	929	1.415	1.901	2.398				
825	259	583	1.231	1.879	2.538	3.186				
1025	324	724	1.534	2.354	3.164	3.974				
1225	378	875	1.847	2.819	7.031	4.774				

AUSFÜHRUNGSVARIANTEN FÜR JR-7 UND JR-8:

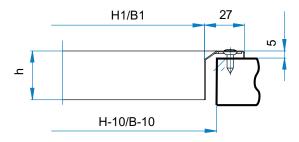
- LÜFTUNGSGITTER JR-7 UND JR-8 ohne Anbauteil
- LÜFTUNGSGITTER JR-7/F UND JR-8/F Anbauteil F = gegenläufige Lamellen


LÜFTUNGSGITTER JR-7/2 UND JR-8/2

mit Einbaurahmen für verdeckte Befestigung der Lüftungsgitter

• Mehrpreis Pulverbeschichtung in RAL nach Wahl

Einbaumöglichkeiten JR

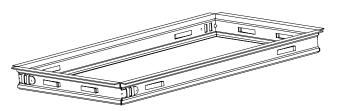


GITTEREINBAU MIT EINBAURAHMEN: VERDECKTE SCHRAUBBEFESTIGUNG /2

B1 = B-27 / H1 = H-27 JR-3, JR-4 H = 34 MM JR-7, JR-8 H = 46 MM

Bezeichnung: JR-3/2, JR-4/2, JR-7/2, JR-8/2

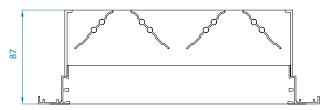
GITTEREINBAU JR


GITTEREINBAU OHNE EINBAURAHMEN: SCHRAUBBEFESTIGUNG

B1 = B-27 / H1 = H-27 JR-3, JR-4 H = 34 MM JR-7, JR-8 H = 46 MM

Bezeichnung: JR-3, JR-4, JR-7, JR-8

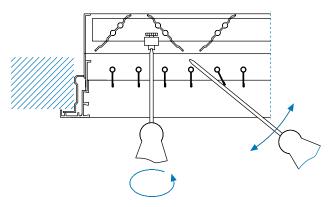
EINBAURAHMEN IN AUSFÜHRUNGSVARIANTE /2


Der Einbaurahmen kann eingebaut (Beton- oder Ziegelwände) oder mittels Schrauben (Wand, Decke, Kanal, ...) befestigt werden.

Anbauteile JR

Anbauteile wie Mengenregulierungen sind erforderlich, um eine Einregulierung auf die optimalen Betriebsbedingungen der Lüftungsgitter vornehmen zu können. Je nach Anwendungsfall kommt das Anbauteil zum Einsatz, um die Luftgeschwindigkeiten bzw. Luftmengen am Gitter und dessen Wurfweite auf die Betriebsbedingungen anpassen zu können. Der Anbauteil in Standardausführung ist aus Stahlblech hergestellt und schwarz beschichtet. Auf Anfrage ist auch die Ausführung aus verzinktem Stahlblech mit Beschichtung in RAL-Farbe nach Wahl möglich.

F

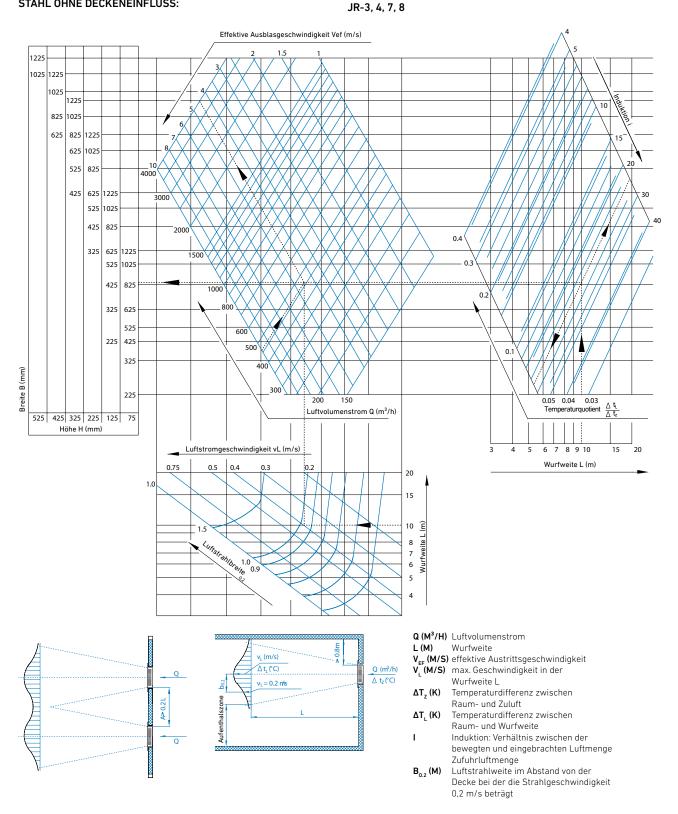

Anbauteil für Lüftungsgitter, zur Regulierung der Luftmenge über gegenläufig gekoppelte Lamellen aus Aluminiumprofilen. Einfache Verstellmöglichkeit auch bei eingebautem Gitter mit einem Schraubenzieher. Durch die spezielle Ausführung der Verstelleinrichtung und der Lagerung der Luftlamellen wird ein "Flattern" der Lamellen gänzlich verhindert.

KOMBINATIONEN VON ANBAUTEILEN UND LÜFTUNGSGITTERN JR

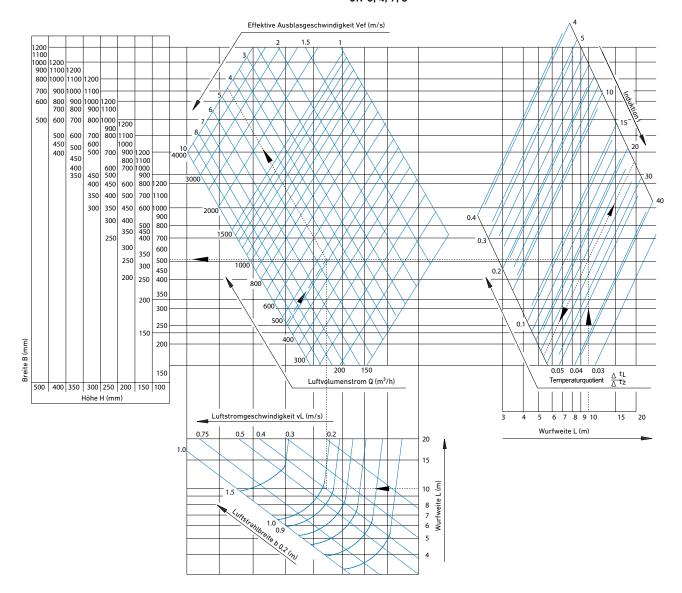
GITTER	F
JR-3	x
JR-4	X
JR-7	Х
JR-8	х

X = Standard

EINSTELLMÖGLICHKEITEN AN LÜFTUNGSGITTERN JR MIT ANBAUTEILEN

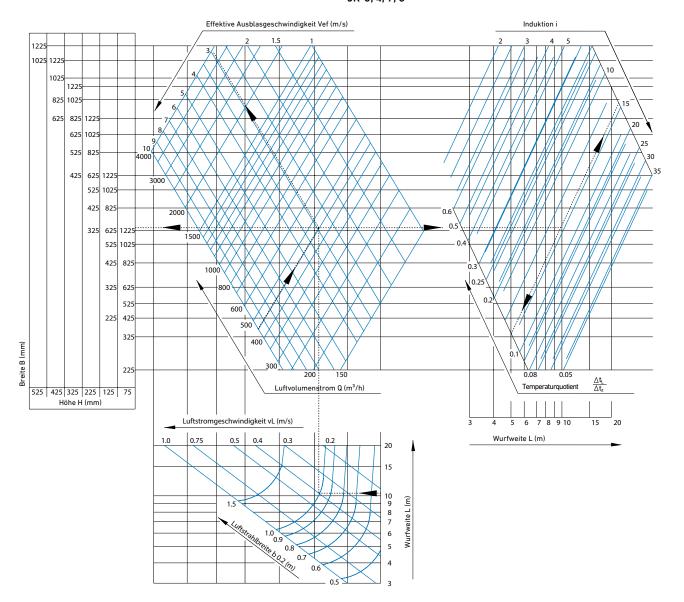

Gegenläufige Mengenregulierung mit Gleichrichter

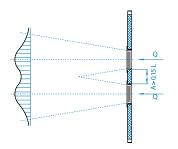
Luftmengen JR

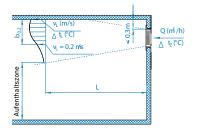

BESTIMMUNG DER NENNGRÖSSEN, INDUKTION UND LUFTSTROMTEMPERATUR FÜR GITTER AUS ALUMINIUM UND STAHL OHNE DECKENEINFLUSS:

GILT FÜR B/H ≤ 12 - HORIZONTAL EINGESTELLTE LAMELLEN DER TYPE:

BESTIMMUNG DER NENNGRÖSSEN, INDUKTION UND LUFTSTROMTEMPERATUR FÜR GITTER AUS STAHL OHNE DECKENEINFLUSS: GILT FÜR B/H \leq 12 - HORIZONTAL EINGESTELLTE LAMELLEN DER TYPE: JR-3, 4, 7, 8






LUFTAUSLÄSSE

BESTIMMUNG DER NENNGRÖSSEN, INDUKTION UND LUFTSTROMTEMPERATUR FÜR GITTER AUS ALUMINIUM UND STAHL MIT DECKENEINFLUSS:

GILT FÜR B/H ≤ 12 - HORIZONTAL EINGESTELLTE LAMELLEN **DER TYPE:** JR-3, 4, 7, 8

Q (M³/H) Luftvolumenstrom

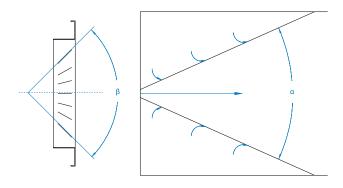
L (M) Wurfweite

V_{EF} (M/S) effektive Austrittsgeschwindigkeit V_L (M/S) max. Geschwindigkeit in der

Wurfweite L Temperaturdifferenz zwischen ΔT_z (K) Raum- und Zuluft

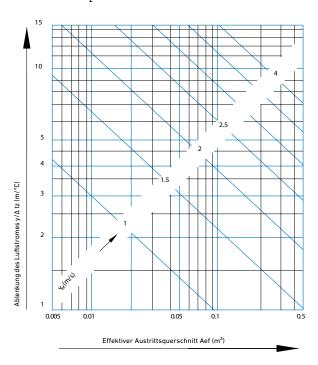
ΔT_L (K) Temperaturdifferenz zwischen

Raum- und Wurfweite


Induktion: Verhältnis zwischen der bewegten und eingebrachten Luftmenge

Zufuhrluftmenge

Luftstrahlbreite im Abstand von der Decke bei der die Strahlgeschwindigkeit B_{0.2} (M) 0.2 m/s beträgt



KORREKTURFAKTOR FÜR HORIZONTALE STRAHLABLENKUNG TYPE: JR-3, 4, 7, 8

Einstellwinkel der Lamellen	ß	45°	90°
Öffnungswinkel	α	35°	60°
Luftstromgeschwindigkeit	v _L	v _L diag. x 0.7	x 0.5
Temperaturquotient $\Delta t_L/\Delta t_Z$		$(\Delta t_L / \Delta t_Z \text{ diag.}) \times 0.7$	x 0.5
Induktion	i	i diag. x 1.4	x 2.0
Ablenkung	у	y diag. x 1.4	x 2.0
minimaler Gitterabstand	Α	0.25 L	0.3 L

BESTIMMUNG DER ABLENKUNG DES LUFTSTRAHLS BEI KÜHLBETRIEB ΔT_z (°C):

BEISPIEL:

ANGABEN:

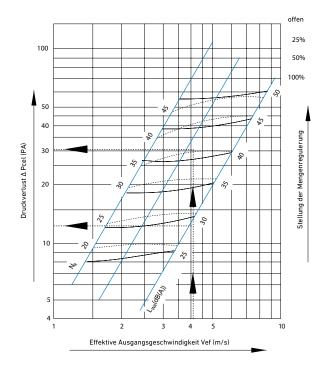
Luftvolumenstrom: $Q = 460 \text{ m}^3/\text{h}, L = 10 \text{m}$

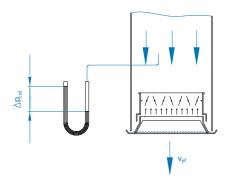
Luftstromgeschwindigkeit: $v_L = 0.4 \text{ m/s}$ Temperaturdifferenz: $\Delta t_7 = 5 \text{ °C}$

LÖSUNG:

Siehe Diagramm, Abstand zur Decke: ≤ 0.3 m und wähle die Gittertype JR-3, Größe B = 625, H = 125

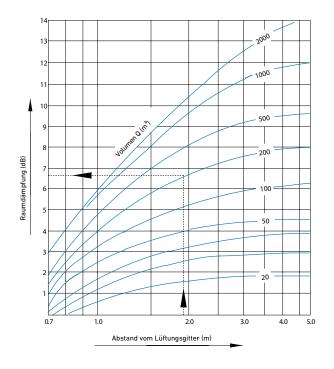
Effektive Austrittsgeschwindigkeit $v_{ef} = 2.8 \text{ m/s}$ Temperaturquotient $\Delta t_1/\Delta t_7 = 0.013$


Temperaturdifferenz $\Delta t_{L}^{L} = 0.013 \times 5 = 0.65 \, ^{\circ}\text{C}$


 $\begin{array}{lll} \mbox{Induktion} & \mbox{i = 15} \\ \mbox{Luftstrombreite} & \mbox{b}_{0.2} = 1.0 \mbox{m} \\ \mbox{Minimaler Abstand} & \mbox{A = 1.5 m} \\ \end{array}$

LUFTAUSLÄSSE

DRUCKVERLUST UND SCHALLDATEN FÜR GITTER DER TYPEN JR-3, 4, 7, 8 MIT ANBAUTEIL F



KORREKTURFAKTOREN FÜR DIE AKUSTISCHEN DATEN

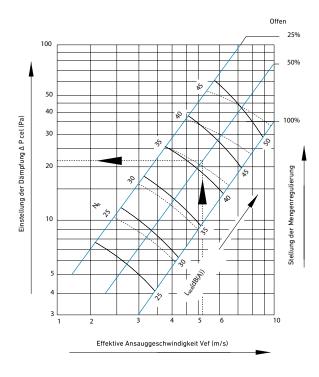
A _{ef} (m²)	0.01	0.02	0.05	0.1	0.2	0.4
Faktor (dB(A)) N _R	-10	-7	-3	0	+3	+6

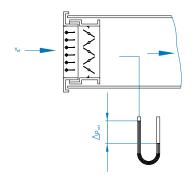
ΔP_{CEL} (PA) Druckverlust L_{WA} (DB(A)) Schallleistungspegel A-bewertet N_R Grenzkurve nach ISO

BESTIMMUNG DER SCHALLDÄMPFUNG FÜR DEN RAUM

BERECHNUNGSRAUMVOLUMEN Q':

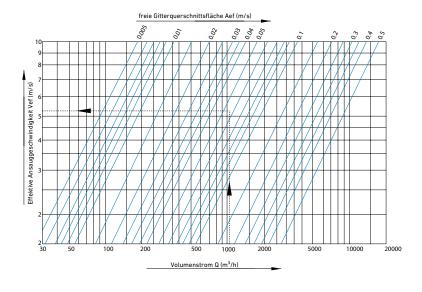
1. Normale Räume Q' = Q2. Schallharte Räume Q' = 0.5Q


3. Räume mit hohem Absorbierungsgrad Q' = 2Q


 $Q'(M^3)$ Berechnungsvolumen, in Abhängigkeit der akustischen Gegebenheiten des Raumes

 $Q(M^3)$ Raumvolumen

DRUCKVERLUST UND SCHALLDATEN FÜR GITTER DER TYPEN JR-3, 4, 7, 8 MIT ANBAUTEIL F



KORREKTURFAKTOREN FÜR DIE AKUSTISCHEN DATEN

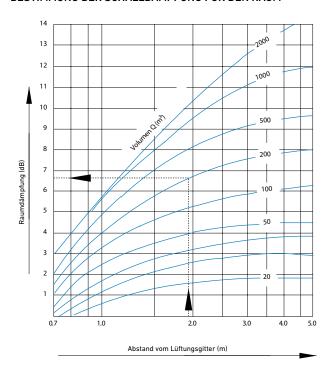
A _{ef} (m²)	0.005	0.01	0.02	0.05	0.1	0.2	0.4
Faktor (dB(A)) N _R	-13	-10	-7	-3	0	+3	+6

BESTIMMUNG DER EFFEKTIVEN ANSAUGGESCHWINDIGKEIT

BEISPIEL:

 $Q = 1000 \text{ m}^3/\text{h}$

 $A_{ef} = 0.05 \text{ m}^2$

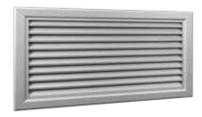

(aus Tabelle freier Gitterquerschnitt)

 $A_{_{\rm s}}$ aus dem Diagramm.

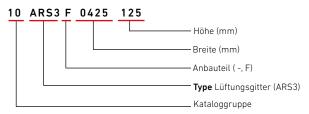
 $V_{ef} = 5.3 \text{ m/s}$

BESTIMMUNG DER SCHALLDÄMPFUNG FÜR DEN RAUM

BERECHNUNGSRAUMVOLUMEN Q':


1. Normale Räume	Q' = Q
2. Schallharte Räume	Q' = 0.5Q
3. Räume mit hohem Absorbierungsgrad	Q' = 2Q

Berechnungsvolumen, in Abhängigkeit der akustischen Gegebenheiten des Raumes Raumvolumen $Q'(M^3)$


 $Q(M^3)$

Lüftungsgitter ARS-3

ARTIKELSCHLÜSSEL

Hinweis:

Wenn die Breite weniger als 1000 mm beträgt, ist bei der Artikelnummer eine 0 vor den Wert zu setzen (siehe Artikelschlüssel).

Falls die RAL-Oberfläche nicht im Bestellcode angegeben ist, wird das Produkt in der Standardausführung mit unbehandelter Eloxal-Oberfläche geliefert.

Wird eine andere Farbe als RAL 9003 Glanzgrad 30 gewünscht, ist der Hinweis "RAL" im Bestellcode anzugeben. Die genaue Farbbezeichnung – die RAL-Nummer – ist dann in den Hinweisen zur Bestellung zu vermerken.

Befestigung und Ausschnitte

sichtbare Schraubbefestigung (ohne Einbraurahmen)

Ausschnitt: Breite Nennmaß -5 mm Höhe Nennmaß -5 mm (Bördel ... B13)

verdeckte Befestigung (Sichherheitsbefestigung mit Einbaurahmen)

Ausschnitt: Breite Nennmaß Höhe Nennmaß

(Bördel ... B10)

Beschreibung

ARS-3 ist ein rechteckiges, nicht transparentes
Aluminiumgitter mit festen Lamellen. Es ist für den
Einsatz in allen Räumen geeignet, in denen Wert auf ein
ansprechendes optisches Erscheinungsbild gelegt wird.
Es ist für die Abluft konzipiert. Um eine gleichmäßige
Luftverteilung über das gesamte Gitter zu erzielen, wird
die Verwendung einer Klappe oder eines Anschlusskastens
empfohlen.

Montage

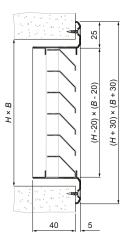
Das ARS-3 Gitter kann mit Senkschrauben direkt in einen eckigen Kanal montiert werden. Des Weiteren ist es möglich das Gitter unter Verwendung der Sicherheitsbefestigung und des Montagerahmens an der Wand und der Decke zu installieren (Typ ER).

Die Sicherheitsbefestigung vom Typ ER besteht aus einer Kombination aus Ratsche und Feder, die die Befestigung des Gitters ohne Werkzeug durch Einschieben in den Montagerahmen ermöglicht. Um das Gitter vom Rahmen zu lösen, werden die Ratschenfedern nacheinander mit einem flachen Schraubenzieher gegen den Gitterkörper gedrückt, wobei das Gitter aus dem Rahmen gezogen wird.

WICHTIG: Für die Befestigungsart ER muss die Größe der Montageöffnung für den Montagerahmen genau den Vorgaben in diesem Dokument entsprechen (H x B Dimension in der Maßtabelle). Der Montagerahmen muss spannungsfrei eingebaut werden um Verformungen zu verhindern. Für zusätzliche Sicherheit sind die Gitter mit mehr als 4 Ratschenfedern vom Typ ER mit 2 Ketten ausgestattet. Diese müssen an der angrenzenden starren Gebäudestruktur befestigt werden.

GITTER WERDEN OHNE SENKBLECHSCHRAUBEN GELIEFERT UND KÖNNEN SEPARAT BESTELLT WERDEN!

Design


Verwendetes Material:

Das ARS-3 Gitter besteht aus Aluminiumprofilen mit Eloxalbeschichtung oder ggf. mit pulverlackierter (RAL 9003 – weiß) Oberfläche; weitere RAL-Typen sind auf Anfrage erhältlich.

Lamellentyp:

Die Gitterlamellen sind mit einem Blattabstand von 20 mm befestigt und in einem Winkel von 45° nach unten geneigt.

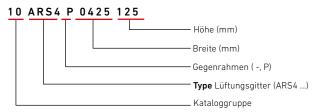
ARS-3

Abbildung: ARS-3 Grundmaße und Gittertypen

Technische Details

Abmessungen

Abmessungen		Freifläche	Gewicht
В	н	A _v	m
(m	im)	(m²)	(kg)
225	125	0,007	0,35
325	125	0,011	0,46
325	225	0,025	0,73
	125	0,015	0,56
425	225	0,035	0,89
	325	0,054	1,23
	125	0,019	0,66
525	225	0,044	1,06
	325	0,068	1,45
	125	0,024	0,77
625	225	0,053	1,22
625	325	0,083	1,68
	425	0,112	2,14
	125	0,031	0,99
825	225	0,071	1,59
625	325	0,110	2,18
	425	0,149	2,78
	125	0,040	1,20
	225	0,089	1,92
1025	325	0,139	2,64
	425	0,188	3,36
	525	0,238	4,08
	125	0,048	1,41
	225	0,108	2,25
1225	325	0,168	3,10
	425	0,228	3,94
	525	0,288	4,79


Tabelle: Abmessungen, freier Querschnitt und Gewicht der ARS-3 Gitter

Lüftungsgitter ARS-4

ARTIKELSCHLÜSSEL

Hinweis:

Wenn die Breite weniger als 1000 mm beträgt, ist bei der Artikelnummer eine 0 vor den Wert zu setzen (siehe Artikelschlüssel).

Falls die RAL-Oberfläche nicht im Bestellcode angegeben ist, wird das Produkt in der Standardausführung mit unbehandelter Eloxal-Oberfläche geliefert. Wird eine andere Farbe als RAL 9003 Glanzgrad 30 gewünscht, ist der Hinweis "RAL" im Bestellcode anzugeben. Die genaue Farbbezeichnung – die RAL-Nummer – ist dann in den Hinweisen zur Bestellung zu vermerken.

Beschreibung

ARS-4 ist ein rechteckiges, nicht transparentes Aluminiumgitter mit festen Lamellen. Es ist für den Einsatz in allen Räumen geeignet, in denen Wert auf ein ansprechendes optisches Erscheinungsbild gelegt wird, und ist für einen ungehinderten, freien Luftstrom auf beiden Gitterseiten ausgelegt.

Montage

Das ARS-4 Gitter kann mit Senkschrauben in die Tür eingesetzt werden (Typ "sichtbare Befestigung") oder mit einem Gegenrahmen (P) genutzt werden.

HINWEIS: Für Montageart "1" empfiehlt es sich, die Ausschnitthöhe "H" um 10 mm zu verringern. Dies erleichtert die Befestigung des Gitters in der richtigen Position.

GITTER WERDEN OHNE SENKBLECHSCHRAUBEN
GELIEFERT UND KÖNNEN SEPARAT BESTELLT WERDEN!

Design

Verwendetes Material:

Das ARS-4 Gitter besteht aus Aluminiumprofilen mit Eloxalbeschichtung oder ggf. mit pulverlackierter (RAL 9003 – weiß) Oberfläche; weitere RAL-Typen sind auf Anfrage erhältlich.

Lamellentyp:

min. 26

Die Gitterlamellen sind mit einem Blattabstand von 15 mm in Form eines umgedrehten "V" befestigt. Die Lamellen überlappen einander gegenseitig.

Befestigung und Ausschnitte

sichtbare Schraubbefestigung (ohne Einbraurahmen)

Ausschnitt: Breite Nennmaß -5 mm Höhe Nennmaß -5 mm

(Bördel ... B13)

 $verdeckte\ Befestigung\ (Sichherheitsbefestigung\ mit\ Einbaurahmen)$

Ausschnitt: Breite Nennmaß Höhe Nennmaß (Bördel ... B10)

Technische Details

Abmessungen

Abmessungen		Freifläche	Gew	vicht	
В	Н	H ₁	A _v	m	UR1
	(mm)		(m²)	(k	g)
225	125	116	0,007	0,43	0,15
325	125	116	0,011	0,59	0,19
323	225	211	0,019	0,90	0,22
	125	116	0,014	0,75	0,22
425	225	211	0,025	1,14	0,25
	325	316	0,037	1,61	0,29
	125	116	0,018	0,90	0,25
525	225	211	0,031	1,39	0,28
	325	316	0,047	1,95	0,32
	125	116	0,021	1,06	0,29
625	225	211	0,037	1,63	0,32
623	325	316	0,056	2,29	0,35
	425	416	0,075	2,94	0,39
	125	116	0,028	1,37	0,35
825	225	211	0,050	2,11	0,38
023	325	316	0,075	2,97	0,42
	425	416	0,099	3,82	0,45
	125	116	0,036	1,68	0,42
1025	225	211	0,062	2,59	0,45
1023	325	316	0,093	3,64	0,49
	425	416	0,124	4,70	0,52
	125	116	0,043	1,99	0,49
1225	225	211	0,075	3,07	0,52
1223	325	316	0,112	4,32	0,55
	425	416	0,149	5,57	0,59

Tabelle: Abmessungen, Freifläche und Gewicht der ARS-4 Gitter

Überströmung

Höhe (mm)	(max. Abluf	tmenge in m³/	h bei einer Ge	eschwindigkei	t von 1,5m/s)
Breite (mm)	125	225	325	425	525
225	38	-	-	-	-
325	59	103	-	-	-
425	76	135	200	-	-
525	97	167	254	-	-
625	113	200	302	405	-
825	151	270	405	535	-
1025	194	335	502	670	815
1225	232	405	605	805	977

Lüftungsgitter ARS-6/7

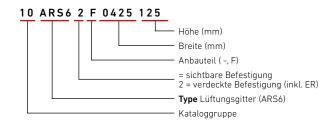
Beschreibung

ARS ist ein rechteckiges Aluminiumgitter mit einer einzigen Lamellenreihe. Diese Lamellenreihe ist starr montiert. Das ARS-Gitter ist für den Einsatz in allen Räumen geeignet, in denen Wert auf ein ansprechendes optisches Erscheinungsbild gelegt wird, und ist sowohl für Zuluft als auch für Abluft konzipiert. Um eine gleichmäßige Luftverteilung über das gesamte Gitter zu erzielen, wird die Verwendung einer Klappe oder eines Anschlusskastens empfohlen.

Montage

Das ARS Gitter kann mit Senkschrauben (Typ "sichtbare Befestigung") direkt auf einem rechteckigen Kanal montiert werden. Die Sicherheitsbefestigung vom Typ ER besteht aus einer Kombination aus Ratsche und Feder, welche die Befestigung des Gitters ohne Werkzeug durch Einschieben in den Montagerahmen ermöglicht. Um das Gitter wieder vom Rahmen zu lösen, werden die Ratschenfedern nacheinander mit einem flachen Schraubenzieher gegen den Gitterkörper gedrückt, gleichzeitig wird das Gitter aus dem Rahmen gezogen.

WICHTIG: Für die Befestigungsart ER muss die Größe der Montageöffnung für den Montagerahmen genau den Vorgaben in diesem
Dokument entsprechen (Höhen- und Breitenmaße in der Maßtabelle). Der
Montagerahmen muss spannungsfrei eingebaut werden um Verformungen
zu verhindern (beispielsweise durch Einbau in eine falsch geformte bzw.
falsch bemessene Einbauöffnung usw.). Aus Sicherheitsgründen sind die
Gitter mit mehr als 4 Ratschenfedern vom Typ ER mit 2 Ketten ausgestattet.
Diese müssen dann an der angrenzenden starren Gebäudestruktur befestigt
werden.


GITTER WERDEN OHNE SENKBLECHSCHRAUBEN GELIEFERT UND KÖNNEN SEPARAT BESTELLT WERDEN!

Design

Verwendete Materialien:

Das ARS Gitter besteht aus Aluminiumprofilen mit Eloxalbeschichtung oder ggf. mit pulverlackierter (RAL 9003 – weiß) Oberfläche; weitere RAL-Typen sind auf Anfrage erhältlich.

ARTIKELSCHLÜSSEL

Ein einschichtig mit Lamellen versehenes Aluminiumwandgitter, das mit Schrauben durch einen Sichtrahmen befestigt wird und für bauliche Öffnungen mit den Maßen 625 x 125 mm bestimmt ist; Typ-1-Lamellen mit 12 mm Blattabstand, Standardausführung. Eloxierte Oberflächenausführung.

LUFTAUSLÄSSE

Koeffizient K_{Av} und K_m

Freiflächenkorrekturkoeffizient für Blattabstände und Lamellen unterschiedlichster Art: $A_{\rm X}$ = $A_{\rm V}$ × ${\rm K}_{\rm Av}$ $m_x = m_1 \times K_m$

Reihenanzahl	Blattabstand d. Lamellen	Lamellentyp	Korrekturfaktor K _{Av}	Korrekturfaktor K _m
		1		Siehe Tabelle 9
1	12	2	Siehe Tabelle 9	0,94
		4		0,84
		1	0,47	Siehe Tabelle 9
2	12	2	1,12	0,96
		4	0,85	0,89

Tabelle: Freiflächenberechnungen für verschiedene Lamellentypen und Blattabstände

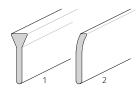
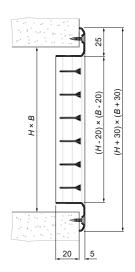
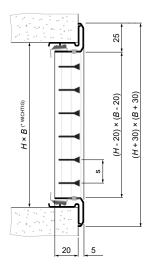




Abbildung: Formarten der Lamellen

ARS-6

ARS-6/2

Abbildung: ARS-6/7 Grundmaße und Gittertypen

* WICHTIG: Informationen zum Einbau und zur Sicherheit des ER-Sicherheitsmontagemechanismus finden Sie im Abschnitt "Montage".

Befestigung und Ausschnitte

sichtbare Schraubbefestigung (ohne Einbraurahmen)

Ausschnitt: Breite Nennmaß -5 mm

Höhe Nennmaß -5 mm (Bördel ... B13)

verdeckte Befestigung (Sichherheitsbefestigung mit Einbaurahmen)

Ausschnitt: Breite Nennmaß

Höhe Nennmaß (Bördel ... B10)

Blattabstand d. Lamellen		12 mm			
Lame	Lamellentyp		── AR-7		
Abmes	Abmessungen		läche		
В	н	A _v	A _v		
(m	nm)	(n	n²)		
	75	0,006	0,009		
225	125	0,011	0,017		
	225	0,021	0,032		
	75	0,009	0,013		
325	125	0,017	0,025		
	225	0,032	0,049		
	75	0,012	0,018		
425	125	0,022	0,034		
425	225	0,043	0,066		
	325	0,063	0,098		
	75	0,015	0,023		
F0F	125	0,028	0,043		
525	225	0,054	0,083		
	325	0,079	0,124		
	75	0,018	0,027		
	125	0,033	0,051		
625	225	0,064	0,099		
	325	0,094	0,147		
	425	0,124	0,195		
	75	0,024	0,036		
	125	0,045	0,068		
825	225	0,085	0,133		
	325	0,126	0,197		
	425	0,167	0,262		
	75	0,03	0,045		
	125	0,056	0,085		
1025	225	0,106	0,165		
1025	325	0,157	0,246		
	425	0,208	0,326		
	525	0,258	0,406		
	75	0,037	0,054		
	125	0,067	0,103		
1225	225	0,128	0,199		
1223	325	0,189	0,296		
	425	0,250	0,393		
	525	0,311	0,489		

 $A_{\rm v1}$, $m_{\rm 1}$, ...ARS-6 - einreihig

Tabelle: Abmessungen, Freifläche und Gewicht der Gitter

Zuluft

Höhe	(max. Zuluftmenge in m³/h bei einer Geschwindigkeit von 2m/s)							
Breite (mm)	75	125	225	325	425	525		
225	43	79	-	-	-	-		
325	58	122	238	-	-	-		
425	79	158	317	482	-	-		
525	101	202	403	598	-	-		
625	122	245	482	720	965	-		
825	166	324	641	965	1.282	-		
1025	202	403	806	1.210	1.606	2.326		
1225	245	490	965	1.447	1.930	2.794		

Abluft

Höhe	(max. Abluftmenge in m³/h bei einer Geschwindigkeit von 3m/s)							
Breite (mm) (mm)	75	125	225	325	425	525		
225	65	119	-	-	-	-		
325	86	184	356	-	-	-		
425	119	238	475	724	-	-		
525	151	302	605	896	-	-		
625	184	367	724	1.080	1.447	-		
825	248	486	961	1.447	1.922	-		
1025	302	605	1.210	1.814	2.408	3.488		
1225	367	734	1.447	2.171	2.894	4.190		

Lüftungsgitter ARS-13/14/17/18

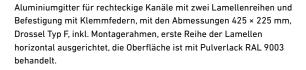
Beschreibung

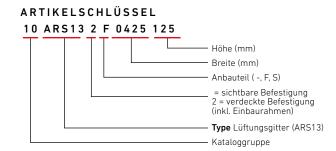
ARS ist ein rechteckiges Aluminium-Lüftungsgitter mit einer oder zwei Reihen verstellbarer Lamellen. Die Gitter können im privaten, öffentlichen und industriellen Bereich eingesetzt werden. Das Gitter leitet die Luft in horizontaler und vertikaler Luftrichtung. Es ist für Zu- und Abluft geeignet und kann in Wänden, Decken und in Kanälen eingebaut werden. Die optionale Drosseleinrichtung ermöglicht eine gleichbleibende Luftmengenverteilung über den gesamten Gitterquerschnitt.

Montage

Das ARS-Gitter kann mit Senkschrauben direkt in einen eckigen Kanal montiert werden. Des Weiteren ist es möglich das Gitter unter Verwendung des Sicherheits-Befestigungsmechanismuses und des Montagerahmens an der Wand und der Decke zu installieren (Typ ER). Die Sicherheitsbefestigung vom Typ ER besteht aus einer Kombination aus Ratsche und Feder, die die Befestigung des Gitters ohne Werkzeug durch Einschieben in den Montagerahmen ermöglicht. Um das Gitter vom Rahmen zu lösen, werden die Ratschenfedern nacheinander mit einem flachen Schraubenzieher gegen den Gitterkörper gedrückt, wobei das Gitter aus dem Rahmen gezogen wird.

GITTER WERDEN OHNE SENKBLECHSCHRAUBEN GELIEFERT UND KÖNNEN SEPARAT BESTELLT WERDEN!


Design


Verwendete Materialien:

Das Lüftungsgitter ARS wird aus eloxierten Aluminiumprofilen oder gegebenenfalls mit einer pulverlackierten (RAL 9003 - weiß) Oberfläche hergestellt; andere RAL-Typen sind auf Anfrage erhältlich.

Lamellentyp:

Die vordere Lamellenreihe kann sowohl horizontal als auch vertikal angeordnet werden. Die zweite Reihe der Lamellen ist immer um 90° verdreht. Der axiale Abstand der Lamellen beträgt 20 mm.

Hinweis

Wenn die Breite weniger als 1000 mm beträgt, ist bei der Artikelnummer eine 0 vor den Wert zu setzen (siehe Artikelschlüssel).

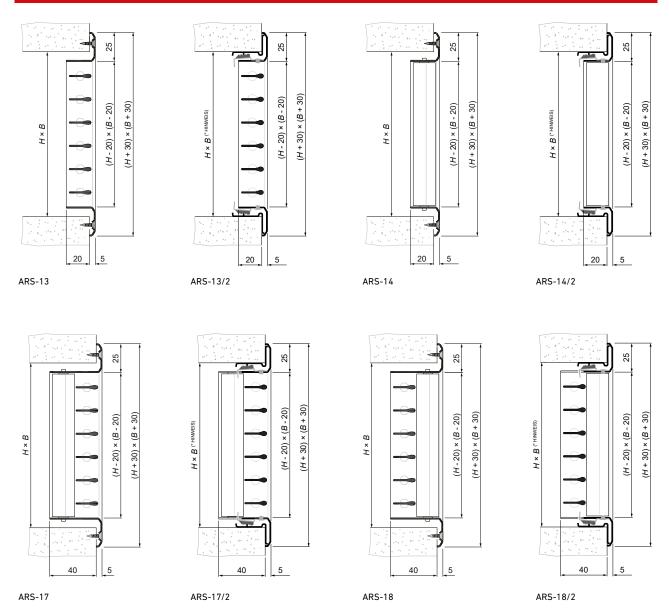


Abbildung: Abmessungen und Typen der ARS Gitter

Befestigung und Ausschnitte

sichtbare Schraubbefestigung (ohne Einbraurahmen)

Ausschnitt: Breite Nennmaß -5 mm Höhe Nennmaß -5 mm (Bördel ... B13)

verdeckte Befestigung (Sichherheitsbefestigung mit Einbaurahmen)

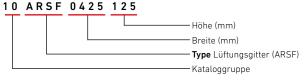
Ausschnitt: Breite Nennmaß Höhe Nennmaß (Bördel ... B10)

Technische Details

Abmessungen

Abmessungen		Freier Qu	ıerschnitt	Gew	vicht
L	Н	A _{v1}	A _{V2}	m ₁	m ₂
(m	ım)	(n	n²)	(k	g)
225	75	0,010	0,008	0,17	0,26
223	125	0,018	0,014	0,25	0,39
325	75	0,014	0,012	0,22	0,35
	125	0,026	0,021	0,33	0,53
	225	0,051	0,041	0,50	0,86
	75	0,019	0,016	0,28	0,44
425	125	0,035	0,028	0,41	0,67
423	225	0,068	0,055	0,63	1,09
	325	0,100	0,082	0,85	1,52
	75	0,024	0,019	0,33	0,53
525	125	0,043	0,035	0,49	0,81
323	225	0,084	0,068	0,76	1,33
	325	0,125	0,102	1,03	1,85
	75	0,029	0,023	0,38	0,62
	125	0,052	0,042	0,57	0,95
625	225	0,101	0,082	0,88	1,56
	325	0,150	0,122	1,20	2,18
	425	0,199	0,162	1,52	2,79
	75	0,038	0,031	0,48	0,80
	125	0,069	0,056	0,73	1,24
825	225	0,134	0,109	1,14	2,04
	325	0,200	0,162	1,55	2,84
	425	0,265	0,215	1,96	3,64
	75	0,048	0,039	0,59	0,98
	125	0,086	0,070	0,89	1,52
1005	225	0,168	0,136	1,39	2,51
1025	325	0,249	0,202	1,90	3,50
	425	0,331	0,268	2,41	4,48
	525	0,412	0,334	2,91	5,47
	75	0,057	0,046	0,69	1,16
	125	0,104	0,084	1,05	1,80
1225	225	0,201	0,163	1,65	2,98
1225	325	0,299	0,242	2,25	4,15
	425	0,396	0,321	2,85	5,33
	525	0,494	0,401	3,45	6,51

 $A_{\rm v_1}, m_{\rm l}, ... {\rm ARS-13/14 - einreihig} \\ A_{\rm v_2}, m_{\rm l}, ... {\rm ARS-17/18 - zweireihig}$


Tabelle: Abmessungen, freier Querschnitt und Gewicht der ARS-Lüftungsgitter

Lüftungsgitter ARSF mit Vorfilter

ARTIKELSCHLÜSSEL

Hinweis:

Wenn die Breite weniger als 1000 mm beträgt, ist bei der Artikelnummer eine 0 vor den Wert zu setzen (siehe Artikelschlüssel).

Aluminiumgitter mit Filterung und Montage mittels Scharnieren und Drehknopf, geeignet für bauliche Öffnungen mit den Maßen 525 × 325 mm, inklusive Filter ISO Coarse 80%.

Falls die RAL-Oberfläche nicht im Bestellcode angegeben ist, wird das Produkt in der Standardausführung mit unbehandelter Eloxal-Oberfläche geliefert.

Wird eine andere Farbe als RAL 9003 Glanzgrad 30 gewünscht, ist der Hinweis "RAL" im Bestellcode anzugeben. Die genaue Farbbezeichnung – die RAL-Nummer – ist dann in den Hinweisen zur Bestellung zu vermerken.

Beschreibung

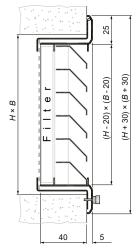
ARSF ist ein rechteckiges, nicht transparentes
Aluminiumgitter mit feststehenden Lamellen und einem verzinkten Stahlkasten. Es ist für den Einsatz in allen Räumen geeignet, in denen Wert auf ein ansprechendes optisches Erscheinungsbild gelegt wird, und ist für die Abluftfiltration konzipiert.

Montage

Das ARSF-Gitter kann mit den Schrauben in den Stahlkastenöffnungen direkt an einem rechteckigen Kanal oder an einer Wand montiert werden. Das Gitter ist mit Scharnieren am Kasten befestigt und kann mittels Drehknopf sicher verschlossen werden. Für die Deckenmontage empfiehlt sich die Verwendung von Senkschrauben (Typ "sichtbare Befestigung").

GITTER WERDEN OHNE SENKBLECHSCHRAUBEN GELIEFERT UND KÖNNEN SEPARAT BESTELLT WERDEN!

Design


Verwendetes Material:

Das ARSF Gitter besteht aus Aluminiumprofilen mit Eloxalbeschichtung oder ggf. mit pulverlackierter (RAL 9003 – weiß) Oberfläche; weitere RAL-Typen sind auf Anfrage erhältlich.

Der Kasten ist aus verzinktem Stahl gefertigt und mit einem Maschensieb ausgestattet. Im Inneren des Kastens befindet sich eine freie Fläche, in die ein Filter ISO Coarse 80% eingesetzt werden kann.

Lamellentyp:

Die Gitterlamellen sind mit einem Blattabstand von 20 mm befestigt und in einem Winkel von 45° nach unten geneigt.

ARSE

Abbildung: ARSF Grundmaße und Gittertypen

Befestigung und Ausschnitte

sichtbare Schraubbefestigung (ohne Einbraurahmen)

Ausschnitt: Breite Nennmaß
Höhe Nennmaß
(Bördel ... B10)

Technische Details

Abmessungen

Abmes	sungen	Freifläche	Gewicht
L	Н	A _v	m
(m	m)	(m²)	(kg)
225	125	0,007	0,65
325	125	0,011	0,85
323	225	0,025	1,24
	125	0,015	1,05
425	225	0,035	1,50
	325	0,054	1,96
	125	0,019	1,24
525	225	0,044	1,77
323	325	0,068	2,30
	425	0,093	2,83
	125	0,024	1,45
625	225	0,053	2,04
023	325	0,083	2,64
	425	0,112	3,24
	125	0,031	1,85
825	225	0,071	2,61
023	325	0,110	3,37
	425	0,149	4,13
	125	0,040	2,25
	225	0,089	3,15
1025	325	0,139	4,05
	425	0,188	4,95
	525	0,238	5,85
	125	0,048	2,65
	225	0,108	3,69
1225	325	0,168	4,74
	425	0,228	5,78
	525	0,288	6,83

Tabelle: Abmessungen, Freifläche und Gewicht der ARSF Gitter

$\textbf{Korrekturfaktor für die Gitterh\"{o}he}_{_{p}}\textbf{K}$

Н	100	150	200	300	600
K _p	0,98	0,95	0,94	0,93	0,91

$$\Delta p_{K} = p_{t} \times K_{p}$$

Druckkorrektur für ein im Luftkanal eingesetztes Gitter

Falls das Gitter in einem Luftkanal eingebaut ist und die Luftgeschwindigkeit im Kanal über der Freiflächengeschwindigkeit \mathbf{v}_{A} liegt, gilt die folgende Formel für den Druckverlust:

$$\Delta p_t = \Delta p_t$$
 Diagr. + Δp_K

Wobei Δp_{κ} durch das Diagramm vorgegeben ist

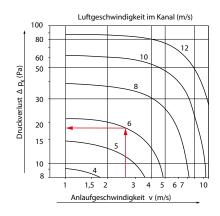


Diagramm: Druckkorrektur für ein im Luftkanal eingesetztes Gitter

Auslegungsdiagramm für ein filterloses Diffusionsgitter

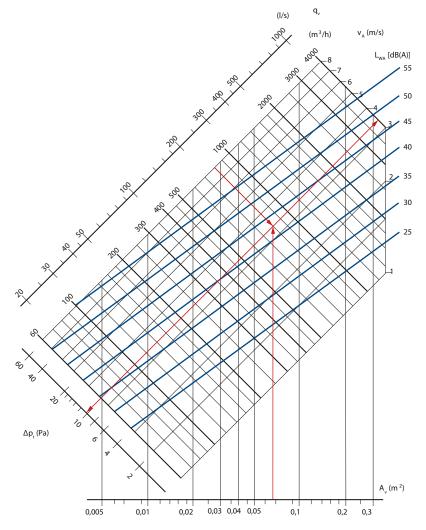


Diagramm: Luftauslass für ARSF

Legende

h	(m)	Abstand von der Decke
I	(m)	Wurflänge
\mathbf{q}_{v}	(m^3/h)	Zuluftvolumenstrom
$\mathbf{q}_{\mathbf{i}}$	(m³/h)	Luftstrom in Distanz /
v _i	(m/s)	Maximale Geschwindigkeit im Arbeitsbereich
V _A	(m/s)	Freiflächengeschwindigkeit
A _{v2}	(m²)	Freier Querschnitt
L _{wa}	[dB (A)]	Akustischer Leistungspegel gewichtet nach Filter A
Δp_t	(Pa)	Druckverlust
Δt ₀	(K)	Differenz zwischen der Zulufttemperatur und der Raumlufttemperatur
Δt _i	(K)	Differenz zwischen der Raumlufttemperatur und der Raumlufttemperatur in Distanz
CA		Korrekturkoeffizient für den Raum
C _H		Korrekturkoeffizient für die Einbauposition von der Decke

Druckverlust des Filters ISO Coarse 80%

Der Druckverlust eines Gitters mit Filter ISO Coarse 80% ergibt sich aus der Summe des Gitter-Druckverlustes $\Delta p_{_{\rm F}}$ und des Filter-Druckverlustes $\Delta p_{_{\rm F}}$.

$$p = \Delta\,p_{_F} + \Delta\,p_{_K}$$

Beispiel: Bestimmung von Druckverlust und akustischem Leistungspegel

Parameter:

 $\begin{array}{ll} \text{Luftstrom:} & \text{q}_{\text{v}} = 800 \text{ m}^{3}/\text{h} \\ \text{Max. Geschwindigkeit:} & \text{v}_{\text{A}} = 3,5 \text{ m/s} \\ \text{Max. akustischer Leistungspegel:} & \text{L}_{\text{WA}} = 45 \text{ dB(A)} \\ \text{Gittertyp:} & \text{ARSF - 2 - 825 \times 225} \\ & \text{A}_{\text{v}} = 0,071 \text{ m}^{2} \end{array}$

Aus dem Diagramm:

$$v_A = 3.4 \text{ m/s}$$

 $L_{WA} = 43 \text{ dB(A)}$
 $\Delta p_t = 10.5 \text{ Pa}$

$$\Delta p_{K} = \Delta p_{T} \times K_{P} => \Delta p_{K} = 10.5 \times 0.94 = 9.87 \text{ Pa}$$

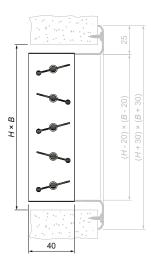
Zubehör

Regulierungselemente

Beschreibung

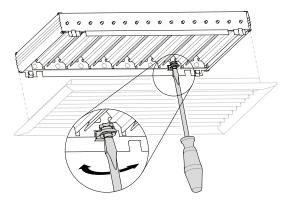
Alle Regulierungselemente sind als Zusatz für die Lüftungsgitter JRS/ARS/SKS vorgesehen und dienen zur gleichmäßigen Verteilung und zur Regulierung der Luftströmung durch das Gitter. Die Einstellung der Regulierungen ist auf Seite 23 dargestellt.

Anbauteil F


Die gegenläufige Mengenregulierung steuert den Luftstrom durch entgegengesetzt drehende Lamellen. Diese sind miteinander verbunden. Die Änderung der Luftströmung durch das Lüftungsgitter erfolgt durch ein Regulierrad, das mit einem Schlitzschraubendreher verstellt werden kann.

Design

Die Regulierungselemente sind aus verzinktem Stahlblech hergestellt und können direkt mit den Gittern bestellt werden, wenn sie als Teil des Bestellcodes des Gitters hinzugefügt werden.


Auf Anfrage sind die Regulierungselemente in beschichteter Ausführung oder aus Edelstahl erhältlich.

Anbauteil F (gegenläufige Mengenregulierung) (gilt für JRS/ARS/SKS)

Abbildungen: Abmessungen der Anbauteile

Anbauteil F (gilt für JRS/ARS/SKS)

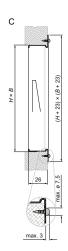
Abbildung: Einstellmöglichkeiten der Regulierungen

Einbaurahmen ER

Beschreibung

Der Montagerahmen ER vereinfacht die Installation von ARS/JRS Gittern in die Wand, Decke oder in Kanäle.

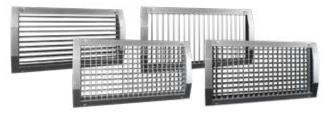
Montage


Der Montagerahmen ER ist für die Befestigung jedem ARS/JRS Gitter vorgesehen, unabhängig von der Montageart. An der Vorderseite befinden sich Schraubenöffnungen, um den ER z. B. in einer Massivwand zu befestigen. Für die Montage in einer Gipskartonwand oder in Mörtel gibt es vorgestanzte Maueranker, die bei der Installation in einem gewünschten Winkel gebogen werden können.

Design

Der Montagerahmen wird aus verzinktem Stahl gefertigt. Die Versionen A2 und A4 aus Edelstahl sind auf Anfrage erhältlich.

- A Mauer, Beton
- B Gipsplatte
- C Holz


Abbildungen: Montage in verschiedenen Materialien

Abmessungen		Gewicht
В Н		ER
(m	m)	(kg)
225	75	0,19
225	125	0,22
	75	0,26
325	125	0,29
	225	0,36
	75	0,33
425	125	0,36
423	225	0,43
	325	0,49
	75	0,39
525	125	0,43
323	225	0,49
	325	0,56
	75	0,46
	125	0,49
625	625 225	0,56
	325	0,63
	425	0,69
	75	0,59
	125	0,63
825	225	0,69
	325	0,76
	425	0,83
	75	0,73
	125	0,76
1025	75 125 75 125 225 75 125 225 325 75 125 225 325 75 125 225 325 75 125 225 325 425 75 125 225 325 425 75	0,83
1023	325	0,90
		0,96
	525	1,03
	75	0,86
		0,90
1225	225	0,96
1223		1,03
		1,10
	525	1,16

 ${\it Tabelle: Abmessungen\ und\ Gewicht\ des\ Montagerahmens\ ER}$

Lüftungsgitter SKS-2/3/4/9

Beschreibung

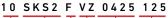
SKS ist ein rechteckiges Stahl-Lüftungsgitter mit einer oder zwei Reihen verstellbarer Lamellen. Die Gitter können im gewerblichen und industriellen Bereich eingesetzt werden. Das Gitter leitet die Luft in horizontaler und vertikaler Luftrichtung. Es ist für Zu- und Abluft geeignet. Die optionale Drosseleinrichtung ermöglicht eine gleichbleibende Luftmengenverteilung über den gesamten Gitterquerschnitt.

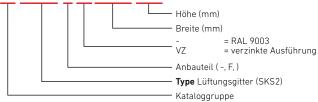
Montage

Das SKS Lüftungsgitter ist für die direkte Montage in runde Kanäle mit Senkschrauben vorgesehen.

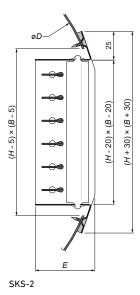
GITTER WERDEN OHNE SENKBLECHSCHRAUBEN
GELIEFERT UND KÖNNEN SEPARAT BESTELLT WERDEN!

Design

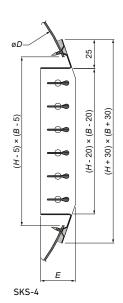

Verwendete Materialien:

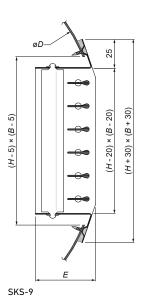

Das Lüftungsgitter SKS wird aus verzinkten Stahlprofilen gegebenenfalls mit einer pulverlackierten (RAL 9003 - weiß) Oberfläche hergestellt; andere RAL-Typen sind auf Anfrage erhältlich. Ebenso können die Gitter auch in Edelstahl A-304 (A2) oder A-316 (A4) hergestellt werden.

Lamellentyp:

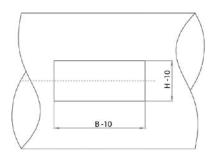

Die vordere Lamellenreihe kann sowohl horizontal als auch vertikal angeordnet werden. Die zweite Reihe der Lamellen ist immer um 90° verdreht. Der axiale Abstand der Lamellen beträgt 20 mm.

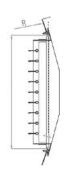
ARTIKELSCHLÜSSEL





Verzinktes Lüftungsgitter für Rohreinbau mit zwei Biegungen (50° und 15°) einreihige, vertikale Lamellen mit den Abmessungen 1025 x 75 mm und Schlitzschieber





Technische Details

Abmessungen und Rohrdurchmesser

Н	Rohr-Ø
75 mm	ø 200 - ø 400 mm
125 mm	ø 300 - ø 900 mm
225 mm	ø 600 - ø 1000 mm
325 mm	ø 900 - ø 1250 mm

Abme	ssungen	Freier Qu	uerschnitt	Gew	vicht
В	Н	A _{V1}	A _{V2}	m ,	m ₂
(mm)		(m²)		(kg)	
			SKS		
	75	0,010	0,008	0,28	0,42
225	125	0,018	0,014	0,40	0,66
	175	-	-	-	-
	75	0,014	0,012	0,39	0,59
	125	0,026	0,021	0,56	0,93
325	175	-	-	-	-
	225	0,051	0,041	0,91	1,59
	75	0,019	0,016	0,51	0,76
	125	0,035	0,028	0,72	1,20
425	175	-	-	-	-
	225	0,068	0,055	1,16	2,04
	325	0,100	0,082	1,58	2,86
	75	0,024	0,019	0,62	0,93
	125	0,043	0,035	0,87	1,48
525	175	-	-	-	-
	225	0,084	0,068	1,40	2,50
	325	0,125	0,102	1,91	3,50
	75	0,029	0,023	0,73	1,11
	125	0,052	0,042	1,03	1,77
625	175	-	-	-	-
	225	0,101	0,082	1,65	2,98
	325	0,150	0,122	2,24	4,17
	75	0,038	0,031	0,95	1,46
	125	0,069	0,056	1,34	2,31
825	175	-	-	-	-
	225	0,134	0,109	2,14	3,90
	325	0,200	0,162	2,91	5,45
	75	0,048	0,039	1,17	1,80
	125	0,086	0,070	1,65	2,85
1025	175	-	-	-	-
	225	0,168	0,136	2,63	4,80
	325	0,249	0,202	3,57	6,70
	75	0,057	0,046	1,40	2,14
	125	0,104	0,084	1,97	3,39
1225	175	-	-	-	-
	225	0,201	0,163	3,13	5,69
	325	0,299	0,242	4,23	7,95

 $A_{\rm V1}$, $m_{\rm 1}$, ...SKS-3/4 - einreihig

 $\textit{A}_{\text{v2}}, \textit{m}_{\text{2}}, ... \text{SKS-2/9}$ - zweireihig

Tabelle: Abmessungen, freier Querschnitt und Gewicht der SKS Lüftungsgitter

Lüftungsgitter SKS-2

7uluft

Höhe	(max. Zuluft	menge in m³/h bei	einer Geschwindigke	it von 2m/s)
Breite (mm)	75	125	225	325
225	58	108	-	-
325	79	166	-	-
425	108	223	454	-
525	130	266	540	814
625	158	324	655	979
825	216	439	878	1.325
1025	259	533	1.080	1.627
1225	317	648	1.310	1.973
•••••		•	•	•··········

Abluft

Höhe	(max. Ablut	tmenge in m³/h bei e	iner Geschwindigkei	it von 3m/s)
Breite (mm)	75	125	225	325
225	86	162	-	-
325	119	248	-	-
425	162	335	680	-
525	194	400	810	1.220
625	238	486	983	1.469
825	324	659	1.318	1.987
1025	389	799	1.620	2.441
1225	475	972	1.966	2.959

Lüftungsgitter SKS-3

Höhe	(max. Zuluf	tmenge in m³/h bei e	einer Geschwindigke	it von 2m/s)
Breite (mm)	75	125	225	325
225	65	122	-	-
325	94	187	-	-
425	122	252	511	-
525	151	310	626	943
625	180	374	756	1.130
825	245	497	1.008	1.519
1025	302	619	1.253	1.886
1225	367	749	1.505	2.268

Abluft

Höhe	(max. Abluf	tmenge in m³/h bei e	iner Geschwindigke	it von 3m/s)
Breite (mm)	75	125	225	325
225	97	184	-	-
325	140	281	-	-
425	184	378	767	-
525	227	464	940	1.415
625	270	562	1.134	1.696
825	367	745	1.512	2.279
1025	454	929	1.879	2.830
1225	551	1.123	2.257	3.402

Lüftungsgitter SKS-4

Zuluft

(max. Zuluftmenge	e in m³/h bei einer	Geschwindigkeit von	2m/s)
75	125	225	325
58	108	-	-
79	166	331	-
108	223	439	655
137	281	547	821
166	338	655	979
216	446	878	1.310
274	562	1.102	1.642
331	670	1.318	1.966
	75 58 79 108 137 166 216 274	75 125 58 108 79 166 108 223 137 281 166 338 216 446 274 562	58 108 - 79 166 331 108 223 439 137 281 547 166 338 655 216 446 878 274 562 1.102

Abluft

Höhe (mm)	(max. Ablu	ftmenge in m³/h bei e	iner Geschwindigke	it von 3m/s)
Breite (mm)	75	125	225	325
225	86	162	-	-
325	119	248	497	-
425	162	335	659	983
525	205	421	821	1.231
625	248	508	983	1.469
825	324	670	1.318	1.966
1025	410	842	1.652	2.462
1225	497	1.004	1.976	2.948

Lüftungsgitter SKS-9

Zuluft

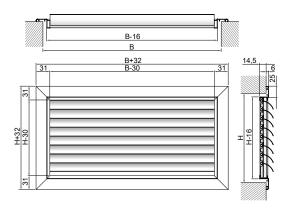
Höhe	(max. Zuluftmenge in m³/h bei einer Geschwindigkeit von 2m/s)					
(mm) Breite (mm)	75	125	225	325		
225	58	108	-	-		
325	79	166	338	-		
425	108	223	454	684		
525	130	266	540	814		
625	158	324	655	979		
825	216	439	878	1.325		
1025	259	533	1.080	1.627		
1225	317	648	1.310	1.973		
••		•	•	•••••••••••••••••••••••••••••••••••••••		

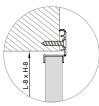
Abluft

Höhe (mm)	(max. Abluftmenge in m³/h bei einer Geschwindigkeit von 3m/s)						
Breite (mm)	75	125	225	325			
225	86	162	-	-			
325	119	248	508	-			
425	162	335	680	1.026			
525	194	400	810	1.220			
625	238	486	983	1.469			
825	324	659	1.318	1.987			
1025	389	799	1.620	2.441			
1225	475	972	1.966	2.959			

Lüftungsgitter SRL-1

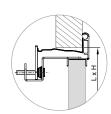
Hinweis: sichtbare Befestigung mit Mengenregulierung oder unsichtbare Befestigung ohne Mengenregulierung möglich


ARTIKELSCHLÜSSEL



Hinweis:

Wenn die Breite weniger als 1000 mm beträgt, ist bei der Artikelnummer eine 0 vor den Wert zu setzen (siehe Artikelschlüssel).


Befestigung und Ausschnitte

sichtbare Schraubbefestigung

Ausschnitt: Breite Nennmaß -5 mm Höhe Nennmaß -5 mm (Bördel ... B13)

verdeckte Befestigung mit Einbaurahmen

Ausschnitt: Breite Nennmaß +8 mm Höhe Nennmaß + 5 mm (Bördel ... B6)

Beschreibung

SRL-1 ist ein Zuluftgitter aus Aluminium, beschichtet in RAL 9003 mit gebogenen, einstellbaren Lamellen, die einseitig, horizontal ausgerichtet werden können, und ist sowohl für die Wand- als auch Deckenmontage geeignet. Das Gitter ist in mehreren Montageausführungen verfügbar und kann mit Einbaurahmen, gegenläufiger Mengenregulierung und Anschlusskasten als Zubehör geliefert werden.

Wartung

Entfernen Sie das Gitter, um Zugang zum Anschlusskasten oder Kanal zu erhalten. Die sichtbaren Teile können mit einem feuchten Tuch abgewischt werden.

Materialien und Ausführung

Gitterrahmen und Lamellen: Eloxiertes Aluminium

Einbaurahmen: Verzinkter Stahl

Gegenläufige Mengenregulierung: Verzinkter Stahl

Zubehör

gegenläufige Mengenregulierung

Technische Daten

Kapazität

Volumenstrom q_v [l/s] und [m³/h], Druckverlust Δp_t [Pa], Wurfweite $I_{0,2}$ [m] und Schallleistungspegel I_{WA} [dB(A)] sind den Diagrammen zu entnehmen und gelten für Gitter ohne gegenläufige Absperrklappe.

Strahlbild

Die Wurfweite I_x [m] bei einer durchschnittlichen Geschwindigkeit von 0,2, 0,25 und 0,3 m/s bei einer Lamelleneinstellung 0° ohne Coanda-Effekt (der Abstand zwischen Gitter und Decke beträgt mehr als 800 mm) ist den Diagrammen zu entnehmen. Korrektur des Strahlbildes – siehe Tabelle unten.

Schallleistungspegel LWA

Der Schallleistungspegel L_{WA} [dB(A)] bei einer Lamelleneinstellung von 0° ist den Diagrammen zu entnehmen. Die Schallleistungspegel gelten für Gitter ohne gegenläufige Mengenregulierung. Siehe Tabelle unten für Korrektur des Schallleistungspegels bei unterschiedlichen Lamellenstellungen [dB].

Frequenzabhängiger Schallleistungspegel

Der Schallleistungspegel im Frequenzbereich ist definiert als $L_{Wf} = L_{WA} + K_{ok}$.

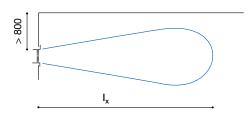
Die K-Werte_{ok} sind in der nachfolgenden Tabelle aufgeführt.

		Mittelfrequenz Hz						
	63	125	250	500	1K	2K	4K	8K
Zuluft	-2	-1	-1	-2	-7	-11	-16	-18
Abluft	-1	-2	-1	-4	-3	-6	-12	-20

Gegenläufige Mengenregulierung

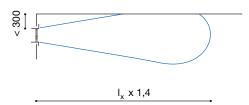
Korrektur des Druckverlusts Δp_t [Pa] und des Schallleistungspegels L_{WA} [dB(A)] beim Einsatz einer Mengenregulierung. Siehe Tabelle unten.

		25% Geschlos	50% Geschlos
Drosselposition	Geöffnet	sen	sen
Druckverlust ∆pt	x 1.15	x 1.3	x 4
Schallleistungspegel LWA	+ 2	+ 6	+ 14

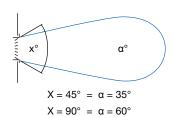

Abluft

Druckverlust ∆p _t	x 0.74
Schallleistungspegel L _{WA}	- 2

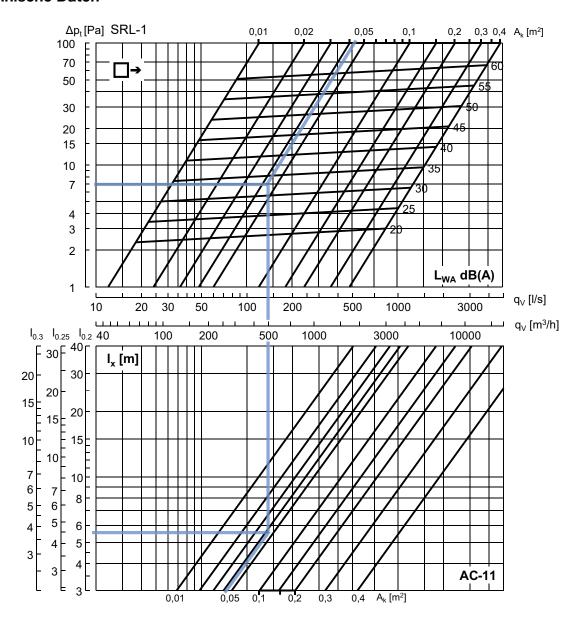
Wurfweite und Strahlausbreitung


Wurfweite

Alle angegebenen Daten gelten für Installationen in einem Abstand von mehr als 800 mm von der Decke.


Bei Gittern, die in einem geringeren Abstand als 300 mm von der Decke installiert sind, ist die Wurfweite um 40 % erhöht, weshalb gilt:

 $I_{x \text{ Ergebnis}} = 1,4 \text{ x } I_{x \text{ Diagrammwert}}$



Luftverteilung

Verstellbare Lamellen zur Einstellung des Strahlbildes. Die Korrekturwerte sind der Tabelle zu entnehmen.

Technische Daten

Beispiel:

 $\begin{array}{ll} \mbox{Gittergröße (LxH):} & 600\times200 \mbox{ mm} \\ \mbox{Freier Querschnitt A}_k: & 0,043 \mbox{ m}^2 \\ \mbox{Volumenstrom q}_v: & 500 \mbox{ m}^3/h \mbox{ (139 l/s)} \\ \end{array}$

Ergebnis:

Die Daten sind gültig für:

- Zuluft
- Lamelleneinstellung 0°
- Isotherme Bedingungen
- Wurfweite ohne Coanda-Effekt (Abstand >800 mm zur Decke)

Gebogene Lüftungsgitter

Die gebogenen Lüftungsgitter werden aus Aluminium hergestellt. Sie können sowohl für Zuluft als auch für Abluft verwendet werden.

- fix eingestellte horizontale Lamellen
- sichtbare oder verdeckte Befestigung
- Konkave oder konvexe Ausführung
- Umlaufende Dichtung am Rahmen

Wandauslass / Kanalauslass

Der Wandauslass / Kanalauslass besteht aus einer Frontplatte mit einer Anzahl Düsen. Durch die spezielle Düsenform erreicht der Diffusor eine hohe Induktion der Raumluft. Der Wandluftauslass kann sowohl für gekühlte als auch erwärmte Luft verwendet werden. Die gerundeten Kanten der Düsen verhindern, dass sich Staub absetzt und vereinfachen die Reinigung.

Theaterauslass

Der Drallauslass ist ideal für den Einsatz in Theatern, Auditorien, Konzerthallen, Kinos usw.. Er kann in Stufen, unter Sitzen oder in Böden (Achtung: nicht trittfest) eingebaut werden. Die Theaterauslässe sind aus verzinkem Stahlblech und pulverbeschichtet in RAL 9010. Auf Wunsch sind weitere RAL-Farben erhältlich.

Variable Düsenauslässe

Zuluft Deckenauslass für Sichtmontage.
Auslässe in verschiedenen Ausführungen erhältlich.
Frontplatte mit einzeln einstellbaren Düsen.
Frontplatte aus verzinktem Stahlblech, pulverbeschichtet, weiß (RAL 9010), mit Düsen ausgestattet.
Düsen aus Kunststoff (RAL 9010), einzeln in einem Winkel von 360° einstellbar.
Geeignet für Heizen und Kühlen.

Edelstahlgitter

Edelstahl AISI 304, sichtbare oder verdeckte Befestigung möglich

Edelstahlgitter

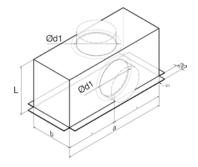
- einzeln einstellbare vertikale und horizontale Lamellen
- sichtbare oder verdeckte Befestigung

Edelstahlgitter

- einzeln einstellbare horizontale Lamellen
- sichtbare oder verdeckte Befestigung

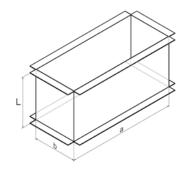
Edelstahlgitter

- fixe horizontale Lamellen
- sichtbare oder verdeckte Befestigung


Edelstahlgitter

- einzeln einstellbare vertikale Lamellen
- sichtbare oder verdeckte Befestigung

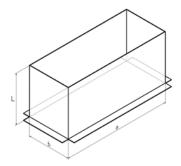
Zubehör für Lüftungsgitter


GITTERKASTEN GK

Aus verzinktem Stahlblech. Die Höhe Lrichtet sich nach der Größe des Gitterkastens: max 350 mm

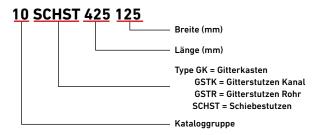

MONTIERTE BUNDKRÄGEN

Bei Bestellung mit Anschluss (IL) ist immer die Anschlussrichtung (oben oder seitlich) anzugeben.


GITTERSTUTZEN FÜR KANAL GSTK

Verzinkt. Höhe L richtet sich nach der Größe: max 200 mm

GITTERSTUTZEN FÜR ROHR GSTR


Verzinkt. Höhe L richtet sich nach der Größe: max 200 mm

SCHIEBESTUTZEN SCHST

Verzinkt. Höhe L richtet sich nach der Größe: max 200 mm

ARTIKELSCHLÜSSEL

Ausschnitte und Montagen

AUSSCHNITT (OHNE VERSTEIFUNG) AUSSOV

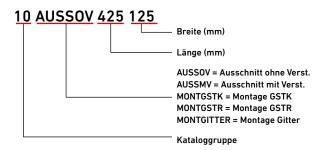
Ausschnitte am Kanal oder Rohr -ohne zusätzliche Versteifungsmaßnahmen. Bei Bestellung mit Anschluss IL ist immer die Anschlussrichtung (oben oder seitlich) anzugeben.

AUSSCHNITT (MIT VERSTEIFUNG) AUSSMV

Ausschnitte am Kanal oder Rohr - mit zusätzliche Versteifungsmaßnahmen.

MONTAGE GSTK AM KANAL MONTGSTK

Montage des Gitterstutzens am Kanal - inkl. Ausschnitt.


MONTAGE GSTR AM ROHR MONTGSTR

Montage des Gitterstutzens am Rohr - inkl. Ausschnitt.

MONTAGE LÜFTUNGSGITTER MONTGITTER

Montage des Lüftungsgitters am Kanal oder Rohr - inkl. Ausschnitt.

ARTIKELSCHLÜSSEL

Allgemein

Für die behagliche Lufteinbringung in raumlufttechnischen Anlagen kommen Drallluftdurchlässe für konstante oder variable Zuluft – Volumenströme zum Einsatz. Mit Drallluftdurchlässen werden nahezu alle Aufgaben bei der Raumklimatisierung im Komfort- und Industriebereich gelöst.

Der erzeugte flache, hochinduktive Horizontalstrahl mit raschem Temperaturund Geschwindigkeitsabbau gewährleistet auch bei hohen Kühllasten und niedrigen Raumhöhen, dass sich die Behaglichkeitsanforderungen im Aufenthaltsbereich realisieren lassen.

Eine optimale Luftverteilung ist in Räumen mit etwa 2.5 bis 4 m Höhe möglich, wobei sich der Einsatzbereich für die Drallluftdurchlässe bis zu einem etwa 30-fachen Raumluftwechsel angeben lässt. Drallluftdurchlässe werden sowohl in geschlossenen Deckensystemen als auch in offener Deckeninstallation eingebaut. Die Ausführung ist mit quadratischer oder runder Ausführung der Frontplatte möglich. Über die einstellbaren Luftlen-

klamellen kann auch nachträglich eine Anpassung der Strömungsrichtung an bauliche Veränderungen erfolgen.

Über einen Anschlusskasten mit integrierter Mengenregulierung und Gleichrichter wird der Luftanschluss wahlweise von oben oder von der Seite hergestellt. Durch Mehrfach-Luftanschlüsse am Anschlusskasten wird die Kastenhöhe verringert. Drallluftdurchlässe werden sowohl für Zuluft als auch für Abluft eingesetzt. Für die Funktion bei Abluft sind die integrierten Luftlenkwalzen nicht zwingend erforderlich.

HYGIENEZERTIFIZIERUNG: (HYGIENE-INSTITUT DES RUHRGEBIETS)

Die Ausführung entspricht den Anforderungen an die Hygiene gemäß den Vorgaben der VDI 6022 (Blatt 1 01/2018), SWKI VA104-01 (01/2019), DIN 1946-4 (09/2018), ÖNORM H 6021 (08/2016), ÖNORM H 6020 (06/2019) und ÖNORM H 6038 (02/2020) entsprechend durchgeführter hygienischer Begutachtungen.

Vorteile

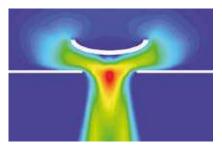
- durch optimierte Walzengeometrie verbessertes Strahlaustrittsverhalten, insbesondere im Kühlbetrieb
- rascher Abbau von Geschwindigkeit und Temperatur durch hohe Induktion
- einfache Veränderung der Strahlrichtung und Strahlform möglich
- niedrige Schallpegel bei großen Luftvolumenströmen
- geeignet für Systeme mit konstanten oder variablen Luftvolumenströmen

Einsatzbereiche

- Komfortbereiche
- Kaufhäuser
- Büroräume
- Versammlungsräume
- Verwaltungszentren
- Mehrzweckhallen
- EDV-Räume
- etc. ...

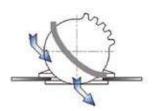
Interspar Klagenfurt, Österreich

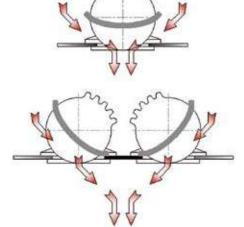
J. Pichler Büro Klagenfurt, Österreich



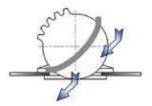
Walzenausführung

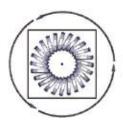
Die hochinduktive Luftverteilung wird über zentrische (PDD-1) oder radial (PDD-2) angeordnete, spezielle strömungstechnisch und akustisch optimierte und verstellbare Luftlenkwalzen aus Kunststoff erreicht. Je nach vorhandener Temperaturdifferenz zwischen Zuluft und Raumluft sind die Luftlenkwalzen im Heiz- oder Kühlbetrieb in ihrer Lage verdrehbar, um optimale strömungstechnische Eintrittsbedingungen zu schaffen.

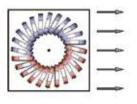

Drallluftdurchlässe bewirken unmittelbar am Auslass eine hohe Induktion mit der Raumluft. Dadurch wird die Geschwindigkeit der austretenden Zuluft und die Temperaturdifferenzen sehr rasch abgebaut. Das gilt für den Heizfall sowie auch bei Raumkühlung mit bis zu -12 K Temperaturunterschied zwischen Raumluft und Zuluft.

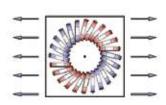

Strömungsbild für Heizbetrieb

Strömungsbild für den Kühlbetrieb


Kühlfall - Innendrall vertikale Einblasrichtung


Heizfall senkrechte Einblasrichtung


Kühlfall - Innendrall vertikale Einblasrichtung

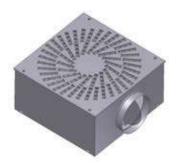

Strömungsrichtungen

alle Luftlenkwalzen in gleicher Richtung auf Außendrall einjustiert, allseitige Drallrichtung Luftlenkwalzen je zur Hälfte auf Außen-

und Innendrall einjustiert, einseitige Drallrichtung Luftlenkwalzen je Quadranten auf

Außen- und Innendrall einjustiert; zweiseitige Drallrichtung

Drallluftdurchlass PDD-1


Drallluftdurchlässe PDD-1 mit Anschlusskasten in runder (R) oder quadratischer (E) Ausführung, mit radial angeordneten, einstellbaren strömungsoptimierten Luftlenkwalzen, zur drallförmigen horizontalen oder vertikalen Luftführung mit hohem Induktionsverhalten.

Bestehend aus der gestanzten Frontmaske, aus Stahlblech verzinkt (pulverbeschichtet im Farbton weiß RAL 9003) verstellbaren und strömungsoptimierten Luftlenkwalzen aus Kunststoff (ABS, standardmäßig schwarz, ähnlich RAL 9005 oder auf Wunsch weiß, ähnlich RAL 9003, ausgeführt) sowie dem Anschlusskasten aus verzinktem Stahlblech mit umlaufender Profildichtung (lose) für den luftdichten Abschluss, mit integrierten Aufnahmebohrungen zur Abhängung der Einheit, innen liegender Luftverteilelemente, mit horizontalen oder vertikalen Einzel- oder Zweifach-Luftanschlussstutzen mit integrierter Mengenregulierung.

HYGIENEZERTIFIZIERUNG: (HYGIENE-INSTITUT DES RUHRGEBIETS)

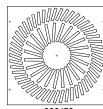
Die Ausführung entspricht den Anforderungen an die Hygiene gemäß den Vorgaben der VDI 6022 (Blatt 1 01/2018), SWKI VA104-01 (01/2019), DIN 1946-4 (09/2018), ÖNORM H 6021 (08/2016), ÖNORM H 6020 (06/2019) und ÖNORM H 6038 (02/2020) entsprechend durchgeführter hygienischer Begutachtungen.

Ausführungen

PDD-1/E Drallluftdurchlass in eckiger Ausführung

PDD-1/R Drallluftdurchlass in runder Ausführung

Baugrößen PDD-1/E

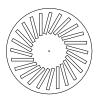


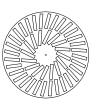
300/8 323/8 400/16 423/16 500/16 600/16 625/16

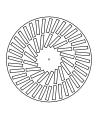
500/24 523/24 600/24 625/24 600/48 623/48 625/54 648/54

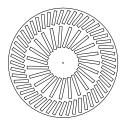
800/72 825/72

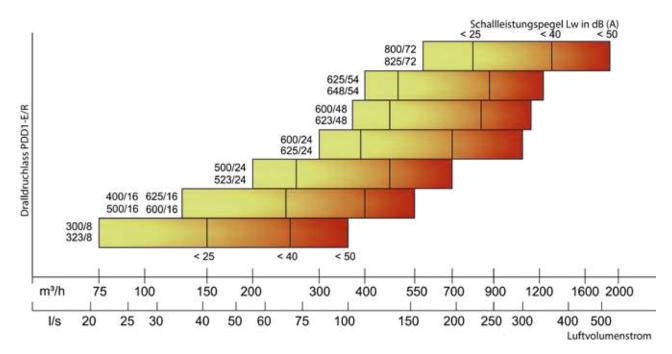
Baugröße PDD-1/E	Frontplatte Artikelnummer	Walzen- anzahl	Frontplatten Abmessung außen [mm]	freier Quer- schnitt [m²]	Befestigung	Baugröße Anschlusskasten Artikelnummer	Abstand Befe- stigung (mm)
300/8	10PDD1E1Z3008	8	298	0,0076		Baugröße 1	-
323/8	10PDD1E1Z3238	8	323	0,0076		10PDDAKE1ZS1MGR1	-
400/16	10PDD1E1Z40016	16	398	0,0152			-
423/16	10PDD1E1Z42316	16	423	0,0152			-
500/16	10PDD1E1Z50016	16	498	0,0152	F1	Baugröße 2 10PDDAKE1ZS1MGR2	-
600/16	10PDD1E1Z60016	16	598	0,0152	1-Loch- Befestigung		-
625/16	10PDD1E1Z62516	16	623	0,0152	M5		-
500/24	10PDD1E1Z50024	24	498	0,0228		Baugröße 3	-
523/24	10PDD1E1Z52324	24	523	0,0228		10PDDAKE1ZS1MGR3	-
600/24	10PDD1E1Z60024	24	598	0,0360		Baugröße 4	-
625/24	10PDD1E1Z62524	24	623	0,0360		10PDDAKE1ZS1MGR4	-
600/48	10PDD1E4Z60048	48	598	0,0456		Baugröße 4	460 x 560
623/48	10PDD1E4Z62348	48	623	0,0456	E4	10PDDAKE4ZS1MGR4	460 x 560
625/54	10PDD1E4Z62554	54	623	0,0513	4-Loch- Befe- stigung M5	Baugröße 5	460 x 580
648/54	10PDD1E4Z64854	54	648	0,0513		10PDDAKE4ZS1MGR5	460 x 580
800/72	10PDD1E5Z80072	72	798	0,0811	E5	Baugröße 6	550 x 760
825/72	10PDD1E5Z82572	72	823	0,0811	5 -Loch- Be- festigung M5	10PDDAKE5ZS1MGR6	550 x 760




Baugrößen PDD-1/R

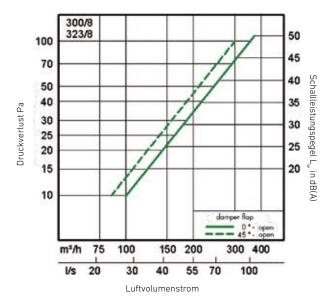


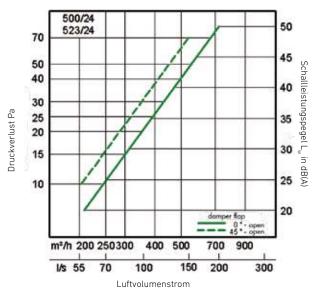


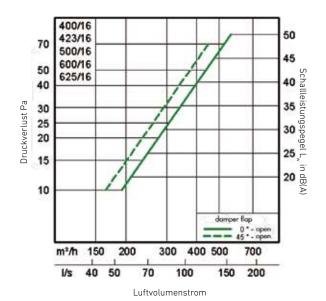

300/8 323/8 400/16 423/16 500/16 600/16 625/16

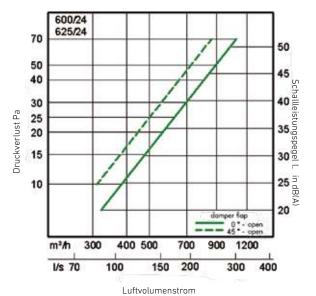
500/24 523/24 600/24 625/24 600/48 623/48 625/54 648/54 800/72 825/72

Baugröße PDD-1/R	Frontplatte Artikelnummer	Walzen- anzahl	Frontplatten Abmessung außen [mm]	freier Quer- schnitt [m²]	Befestigung	Baugröße Anschlusskasten Artikelnummer	
300/8	10PDD1R1Z3008	8	308	0,0076		Baugröße 1	
323/8	10PDD1R1Z3238	8	323	0,0076		10PDDAKR1ZS1MGR1	
400/16	10PDD1R1Z40016	16	398	0,0152			
423/16	10PDD1R1Z42316	16	423	0,0152			
500/16	10PDD1R1Z50016	16	498	0,0152		Baugröße 2 10PDDAKR1ZS1MGR2	
600/16	10PDD1R1Z60016	16	598	0,0152		101 557111112	
625/16	10PDD1R1Z62516	16	623	0,0152			
500/24	10PDD1R1Z50024	24	498	0,0228	R1	Baugröße 3	
523/24	10PDD1R1Z52324	24	523	0,0228	1-Loch- Befe- stigung M5	10PDDAKR1ZS1MGR3	
600/24	10PDD1R1Z60024	24	598	0,0360	(Mitte)	Baugröße 4	
625/24	10PDD1R1Z62524	24	623	0,0360		10PDDAKR1ZS1MGR4	
600/48	10PDD1R1Z60048	48	598	0,0456		Baugröße 4	
623/48	10PDD1R1Z62348	48	623	0,0456		10PDDAKR1ZS1MGR4	
625/54	10PDD1R1Z62554	54	623	0,0513		Baugröße 5	
648/54	10PDD1R1Z64854	54	648	0,0513		10PDDAKR1ZS1MGR5	
800/72	10PDD1R1Z80072	72	798	0,0811		Baugröße 6	
825/72	10PDD1R1Z82572	72	823	0,0811		10PDDAKR1ZS1MGR6	

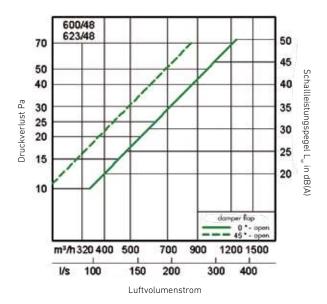

Schnellauswahl für PDD-1/E und PDD-1/R

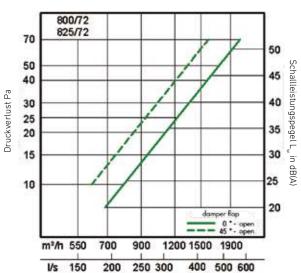


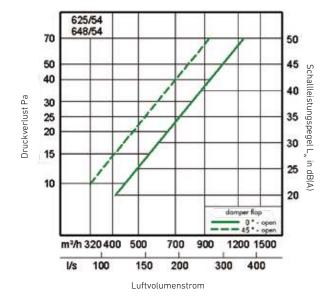

Baugröße PDD-1	V _{min} bei L _W kleiner 25 db(A)	V _{max} bei L _W max. 40 db(A)	freier Quer- schnitt
300/8	150 m³/h	250 m ³ /h	0,0076 m ²
323/8	150 m ³ /h	250 m ³ /h	0,0076 m ²
400/16	240 m³/h	400 m ³ /h	0,0152 m ²
500/16	240 m³/h	400 m ³ /h	0,0152 m ²
600/16	240 m³/h	400 m ³ /h	0,0152 m ²
625/16	240 m³/h	400 m ³ /h	0,0152 m ²
500/24	270 m³/h	470 m ³ /h	0,0228 m ²
523/24	270 m ³ /h	470 m ³ /h	0,0228 m ²
600/24	390 m³/h	700 m ³ /h	0,0360 m ²
625/24	390 m³/h	700 m ³ /h	0,0360 m ²
600/48	470 m ³ /h	830 m³/h	0,0456 m²
625/48	470 m ³ /h	830 m³/h	0,0456 m ²
625/54	500 m ³ /h	850 m³/h	0,0513 m ²
648/54 500 m ³ /h		850 m ³ /h	0,0513 m ²
800/72	800/72 800 m ³ /h		0,0811 m ²
825/72	800 m ³ /h	1300 m ³ /h	0,0811 m ²



Technische Daten PDD-1







Technische Daten PDD-1

Luftvolumenstrom

Drallluftdurchlass PDD-2

Drallluftdurchlässe PDD-2 mit Anschlusskasten in runder (RR) oder quadratischer (ER oder EE) Ausführung, mit runden oder sternförmig angeordneten, einstellbaren, strömungsoptimierten Luftlenkwalzen, zur drallförmigen horizontalen oder vertikalen Luftführung mit hohem Induktionsverhalten.

Bestehend aus der gestanzten Frontmaske, aus Stahlblech verzinkt (pulverbeschichtete im Farbton weiß, RAL 9003) mit verstellbaren und strömungsoptimierten Luftlenkwalzen aus Kunststoff (ABS, standardmäßig schwarz, ähnlich RAL 9005 oder auf Wunsch weiß, ähnlich RAL 9003 ausgeführt) sowie dem Anschlusskasten, aus verzinktem Stahlblech, mit umlaufender Profildichtung (lose) für den luftdichten Abschluss, mit integrierten Aufnahmebohrungen zur Abhängung der Einheit, innen liegender Luftverteilelemente, mit horizontalen oder vertikalen Einzel- oder Zweifach-Luftanschlussstutzen mit integrierter Mengenregulierung.

Die Frontmaske kann über Schrauben (E1, E4, E5) und Traverse montiert bzw. demontiert werden.

HYGIENEZERTIFIZIERUNG: (HYGIENE-INSTITUT DES RUHRGEBIETS)

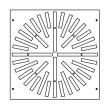
Die Ausführung entspricht den Anforderungen an die Hygiene gemäß den Vorgaben der VDI 6022 (Blatt 1 01/2018), SWKI VA104-01 (01/2019), DIN 1946-4 (09/2018), ÖNORM H 6021 (08/2016), ÖNORM H 6020 (06/2019) und ÖNORM H 6038 (02/2020) entsprechend durchgeführter hygienischer Begutachtungen.

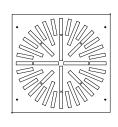
Ausführungen

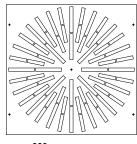
PDD-2/ER Dralldurchlass in eckiger Ausführung mit runder Lamellenanordnung

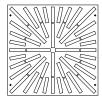
PDD-2/EE Dralldurchlass in eckiger Ausführung mit sternförmiger Lamellenanordnung

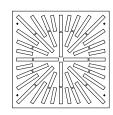
PDD-2/RR Dralldurchlass in runder Ausführung mit runder Lamellenanordnung

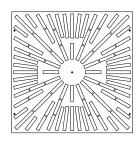



Baugrößen PDD-2/ER




Baugröße PDD-2/ER	Frontplatte Artikelnummer	Walzen- anzahl	Frontplatten Abmessung außen [mm]	freier Querschnitt [m²]	Befestigung	Baugröße Anschlusskasten Artikelnummer	Abstand Befestigung (mm)
310	10PDD2ER1Z310	8	308	0,0076		Baugröße 1 10PDDAKE1ZS1MGR1	-
400	10PDD2ER1Z400	16	398	0,0196	E1 1-Loch- Befestigung M5	Baugröße 2 10PDDAKE1ZS1MGR2	-
500	10PDD2ER1Z500	28	498	0,0288		Baugröße 3 10PDDAKE1ZS1MGR3	-
600	10PDD2ER4Z600	40	598	0,0446	E4	Baugröße 4 10PDDAKE4ZS1MGR4	460 x 560
625	10PDD2ER4Z625	40	623	0,0446	4-Loch- Befestigung M5	Baugröße 5 10PDDAKE4ZS1MGR5	460 x 580
800	10PDD2ER5Z800	62	798	0,0740	E5 5 -Loch- Befestigung M5	Baugröße 6 10PDDAKE5ZS1MGR6	550 x 760


Baugrößen PDD-2/EE

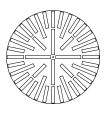


Baugröße PDD-2/EE	Frontplatte Artikelnummer	Walzen- anzahl	Frontplatten Abmessung außen [mm]	freier Querschnitt [m²]	Befestigung	Baugröße Anschlusskasten Artikelnummer	Abstand Befestigung (mm)
310	10PDD2EE1Z310	8	308	0,0076		Baugröße 1 10PDDAKE1ZS1MGR1	-
400	10PDD2EE1Z400	16	398	0,0196	E1 1-Loch- Befestigung M5	Baugröße 2 10PDDAKE1ZS1MGR2	-
500	10PDD2EE1Z500	36	498	0,0408		Baugröße 3 10PDDAKE1ZS1MGR3	-
600	10PDD2EE4Z600	48	598	0,0566	E4	Baugröße 4 10PDDAKE4ZS1MGR4	460 x 560
625	10PDD2EE4Z625	48	623	0,0566	4-Loch- Befestigung M5	Baugröße 5 10PDDAKE4ZS1MGR5	460 x 580
800	10PDD2EE5Z800	84	798	0,0952	E5 5 -Loch-Befestigung M5	Baugröße 6 10PDDAKE5ZS1MGR6	550 x 760

Baugrößen PDD-2/RR

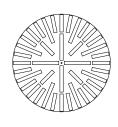
310

800

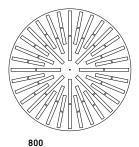


400

10PDD2RR1Z800



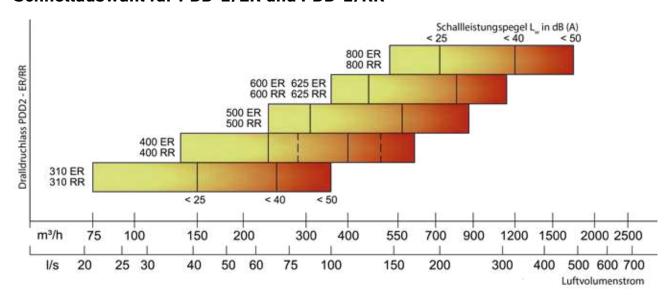
500


600

0,0740

Baugröße 6 10PDDAKR1ZS1MGR6

625

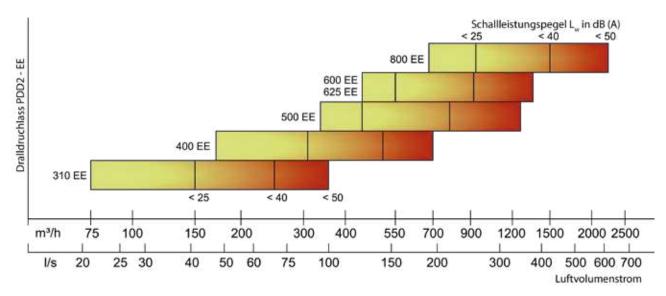


Baugröße PDD-2/RR	Frontplatte Artikelnummer	Walzen- anzahl	Frontplatten Abmessung außen [mm]	freier Querschnitt [m²]	Befestigung	Baugröße Anschlusskasten Artikelnummer
310	10PDD2RR1Z310	8	308	0,0076		Baugröße 1 10PDDAKR1ZS1MGR1
400	10PDD2RR1Z400	16	398	0,0152		Baugröße 2 10PDDAKR1ZS1MGR2
500	10PDD2RR1Z500	28	498	0,0288	R1 1-Loch- Befestigung M5 (Mitte)	Baugröße 3 10PDDAKR1ZS1MGR3
600	10PDD2RR1Z600	40	598	0,0446		Baugröße 4 10PDDAKR1ZS1MGR4
625	10PDD2RR1Z625	40	623	0,0446		Baugröße 5 10PDDAKR1ZS1MGR5

798

Schnellauswahl für PDD-2/ER und PDD-2/RR

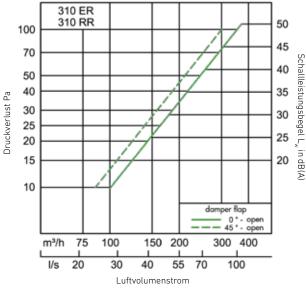
62

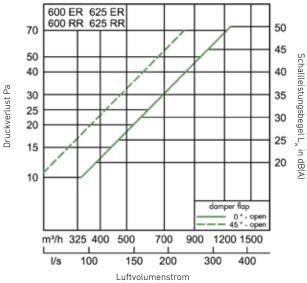


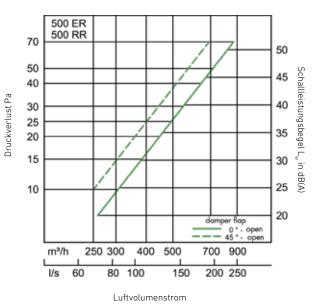
Schnellauswahl für PDD-2/ER und PDD-2/RR

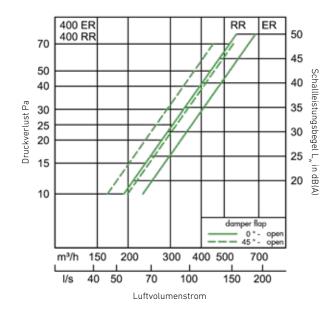
Baugröße PDD-2/ER	5 IIIII W		freier Quer- schnitt
310 ER	150 m ³ /h	250 m³/h	0,0076 m²
400 ER 290 m ³ /h		500 m ³ /h	0,0196 m ²
500 ER	310 m ³ /h	560 m ³ /h	0,0288 m ²
600 ER	460 m ³ /h	810 m ³ /h	0,0446 m ²
625 ER	460 m ³ /h	810 m ³ /h	0,0446 m²
800 ER	730 m³/h	1180 m ³ /h	0,0740 m ²

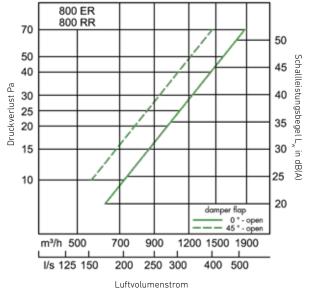
Baugröße PDD-2/RR			freier Quer- schnitt
310 RR	150 m ³ /h	250 m³/h	0,0076 m ²
400 RR	240 m³/h	400 m ³ /h	0,0152 m ²
500 RR	310 m ³ /h	560 m ³ /h	0,0288 m ²
600 RR	460 m ³ /h	810 m ³ /h	0,0446 m ²
625 RR	460 m ³ /h	810 m ³ /h	0,0446 m ²
800 RR	730 m³/h	1180 m ³ /h	0,0740 m ²

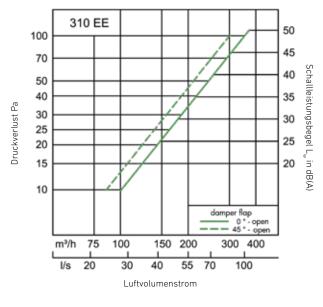

Schnellauswahl für PDD-2/EE

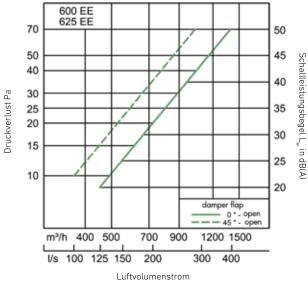



Baugröße PDD-2/EE	V _{min} bei L _w kleiner 25 db(A)	V _{max} bei L _W max. 40 db(A)	freier Quer- schnitt
310 EE	10 EE 150 m ³ /h		0,0076 m2
400 EE	400 EE 310 m ³ /h		0,0196 m ²
500 EE	440 m³/h	790 m³/h	0,0408 m ²
600 EE	550 m ³ /h	930 m³/h	0,0566 m²
625 EE	550 m ³ /h	930 m³/h	0,0566 m²
800 EE	940 m³/h	1520 m ³ /h	0,0952 m ²

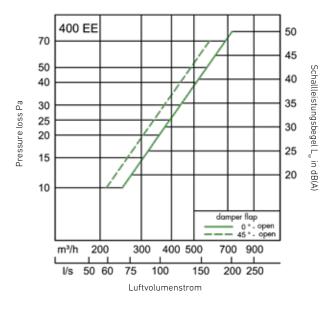


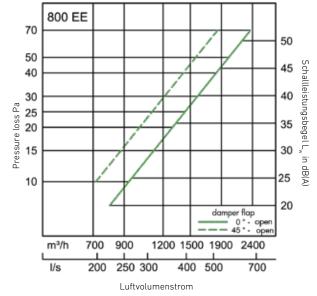

Technische Daten PDD-2/ER und PDD-2/RR

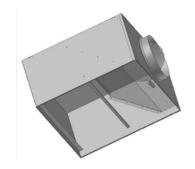


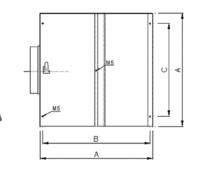


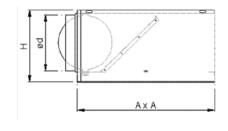




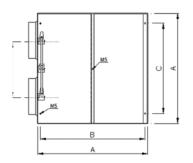

Technische Daten PDD-2/EE

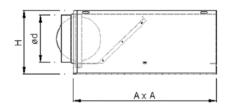






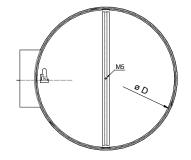
Anschlusskasten eckig mit einem Luftanschluss S1

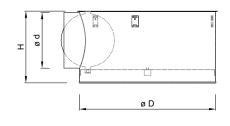




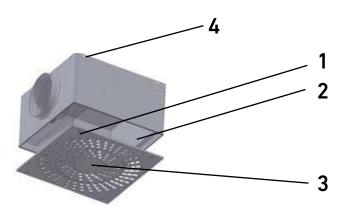
Baugröße	Artikelnummer	A x A (mm)	H (mm)	ø d (mm)	B (mm)	C (mm)	Befestigung
Größe 1	10PDDAKE1ZS1MGR1	290	230	160	-	-	
Größe 2	10PDDAKE1ZS1MGR2	390	270	200	-	-	1-Loch-
Größe 3	10PDDAKE1ZS1MGR3	490	270	200	-	-	Mittelbefestigung M5
Größe 4	10PDDAKE1ZS1MGR4	590	320	250	-	-	
Größe 4	10PDDAKE4ZS1MGR4	590	320	250	560	460	4-Loch-
Größe 5	10PDDAKE4ZS1MGR5	610	320	250	580	460	Befestigung M5
Größe 6	10PDDAKE5ZS1MGR6	790	385	315	760	550	5-Loch- Befestigung M5

Anschlusskasten eckig mit zwei Luftanschlüssen S2




Baugröße	Artikelnummer	A x A (mm)	H (mm)	ø d (mm)	B (mm)	C (mm)	Befestigung
Größe 1	10PDDAKE1ZS2MGR1	290	200	2 x 125	-	-	
Größe 2	10PDDAKE1ZS2MGR2	390	230	2 x 160	-	-	1-Loch-
Größe 3	10PDDAKE1ZS2MGR3	490	230	2 x 160	-	-	Mittelbefesti- gung M5
Größe 4	10PDDAKE1ZS2MGR4	590	270	2 x 200	-	-	
Größe 4	10PDDAKE4ZS2MGR4	590	270	2 x 200	560	460	4-Loch-
Größe 5	10PDDAKE4ZS2MGR5	610	270	2 x 200	580	460	Befestigung M5
Größe 6	10PDDAKE5ZS2MGR6	790	320	2 x 250	760	550	5-Loch- Befestigung M5

Anschlusskasten rund mit einem Luftanschluss R1

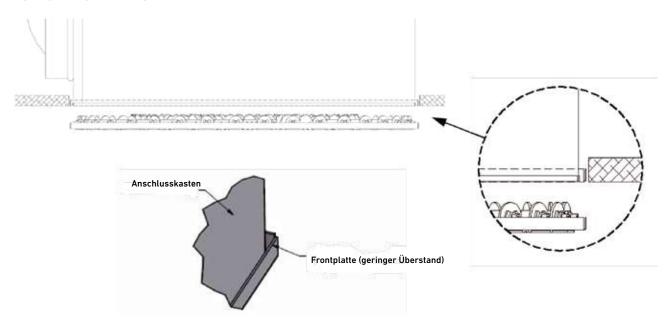


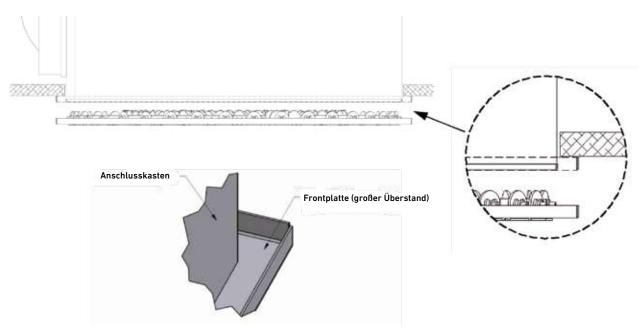
Baugröße	Artikelnummer	D (mm)	H (mm)	ø d (mm)	Befestigung
Größe 1	10PDDAKR1ZS1MGR1	290	230	160	
Größe 2	10PDDAKR1ZS1MGR2	390	270	200	
Größe 3	10PDDAKR1ZS1MGR3	490	270	200	1-Loch- Mittelbe-
Größe 4	10PDDAKR1ZS1MGR4	590	320	250	festigung M5
Größe 5	10PDDAKR1ZS1MGR5	610	320	250	1-10
Größe 6	10PDDAKR1ZS1MGR6	790	385	315	

Material

Bestandteile

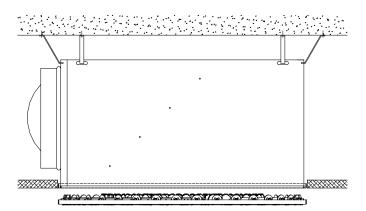
- 1 Frontplatte mit eingebauten Luftlenkwalzen
- 2 Anschlusskasten mit integrierter Mengenregulierung, Verteilerblech und Befestigungsbohrungen
- 3 Befestigungsschraube M5 (Befestigungsart E1, E4 oder E5)
- 4 Befestigungsbohrung bzw. **Befestigungslasche**

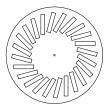

Quadratische oder runde Frontplatte aus sendzimir verzinktem Stahlblech mit vorbehandelter Oberfläche, pulverbeschichtet in RAL Farbe 9003 oder RAL Farbe nach Wahl. Die eingesetzten und verstellbaren Luftlenkwalzen mit Befestigungslaschen aus Kunststoff (ABS), in der Standardausführung in schwarzer Farbe oder auf Wunsch in weißer Farbe (ähnlich RAL 9003) erhältlich. Anschlusskasten mit integrierter Mengenregulierung und Befestigungslaschen bzw. Befestigungsbohrungen aus sendzimir verzinktem Stahlblech hergestellt.


Einbau

Alle Baugrößen der Drallluftdurchlässe sind für den deckenbündigen Einbau in geschlossene oder offene Deckenkonstruktionen geeignet. Beim Einbau in Deckenausschnitte empfehlen wir die Frontplatten mit vergrößertem Überstand.

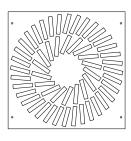
BÜNDIGER DECKENEINBAU


EINBAU BEI DECKENAUSSCHNITT

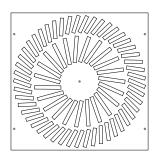


LUFTAUSLÄSSE

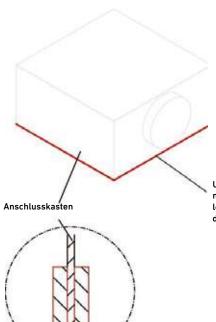
Montage



Die Montage des Anschlusskastens ist entsprechend den baulichen und statischen Gegebenheiten vor Ort anzupassen. In der Regel wird der Anschlusskasten mit Seilen, Montagebändern oder Schlitzlochbandeisen in die am Kasten vorgesehenen Bohrungen oder Befestigungslaschen abgehängt. Eine direkte Befestigung von Deckenkonstruktionen an den Anschlusskasten ist nicht zulässig.

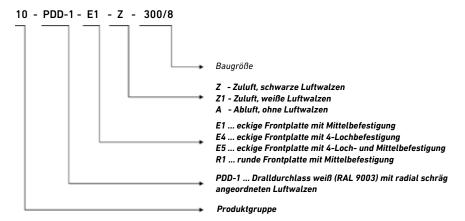


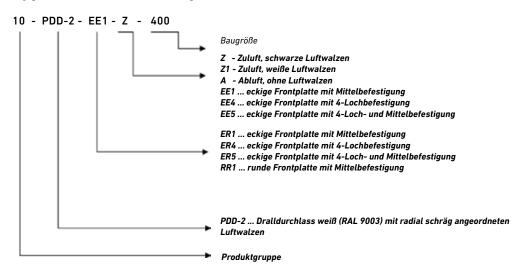
Befestigung R1

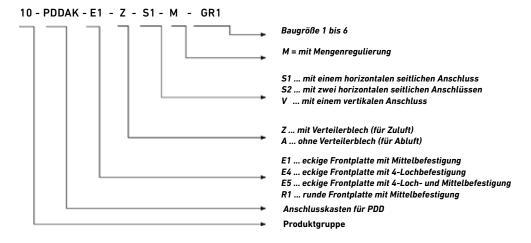

Befestigung E4

Befestigung E5

Die Befestigung der Frontplatte erfolgt mit den mitgelieferten Befestigungsschrauben M5 entsprechend der gewählten Befestigungsvariante: 1-Loch (E1 oder R1), 4-Loch (E4) oder 5-Loch-Befestigung (E5).

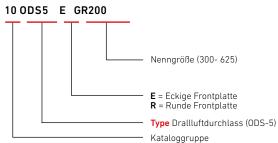

Montagehinweis


U-Dichtung bauseits auf den Anschlusskasten montieren. (liegt bei Lieferung der Frontplatte lose bei). Senkkopfschrauben M5 x 80 mit Abdeckkappe liegen ebenfalls lose bei.

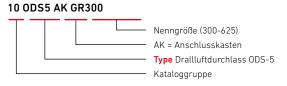

Typenschlüssel Frontplatten PDD-1

Typenschlüssel Frontplatten PDD-2

Typenschlüssel Anschlusskästen



Drallluftdurchlässe ODS-5



ARTIKELSCHLÜSSEL

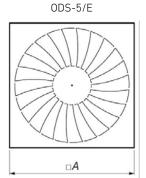
Frontplatte

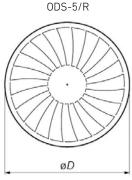
Anschlusskasten

Mehrpreise für Beschichtung auf Anfrage erhältlich!

Beschreibung

Der Dralldurchlass ODS-5 mit feststehenden Lamellen ist ein komfortables Luftverteilungselement. Der Frontdurchlass wird mit einem radial ausgerichteten Satz unterschiedlich geformter Lamellen geliefert, die eine gleichmäßige Verteilung der Drall-Zuluft in den Aufenthaltsbereich gewährleisten. Der Drallauslass ODS-5 kann mit einem Anschlusskasten mit horizontalem oder vertikalem Anschluss über einen flexiblen Rundrohr oder den SPIRO-Kanal an einen Luftkanal montiert werden. ODS-5 kann sowohl für die Zu- als auch für die Abluft eingesetzt werden. Der Drallauslass mit festen Lamellen ermöglicht durch seinen Wirbelauslass einen intensiven Drall. Er kann sowohl zur Belüftung als auch zur Versorgung mit kalter oder warmer Luft verwendet werden.

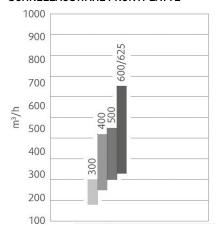

Design

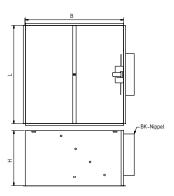

Verwendete Materialien:

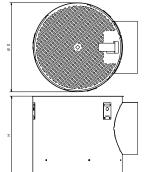
Der Durchlass kann mit einem runden oder quadratischen Frontdurchlass aus verzinktem Stahl gefertigt werden. Es ist auch möglich den Auslass aus Edelstahl AISI304 oder AISI316 zu fertigen. Die Oberfläche ist standardmäßig in Reinweiß RAL 9003 pulverbeschichtet, andere RAL-Farben sind auf Anfrage möglich. In der Mitte des Auslasses befindet sich eine Öffnung zur Befestigung des Frontdurchlasses mit einer Schraube. Jede ODS-5 Front beinhaltet eine Schraube mit einer weißen Kappe zur Montage auf einem Anschlusskasten sowie eine selbstklebende Dichtung, die bei der Montage auf den Auslasses aufgebracht werden muss.

Abmessungen

AUSFÜHRUNG FRONTPLATTE

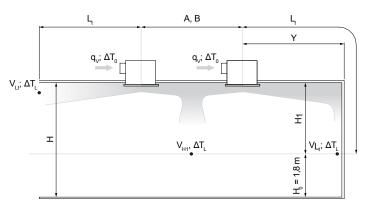



Artikel-	Größe	Α	øD	Freifläche für Frontdurchlässe
nummer		(mm)	(mm)	(m²)
	300	296	298	0,012
	400	396	398	0,023
ODS-5	500	496	498	0,035
	600	596	598	0,058
	625	621	623	0,058



SCHNELLAUSWAHL FRONTPLATTE

AUSFÜHRUNG ANSCHLUSSKASTEN



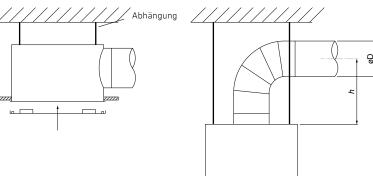
			Eckig		Ru	ınd	
Artikel-	Größe	L	В	н	D	Н	BK - Nippel
nummer	Orone	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
	300	265	265	240	270	230	160
	400	365	365	280	370	270	200
ODS-5- AK	500	465	465	280	470	270	200
	600	565	565	330	570	320	250
	625	590	590	330	595	320	250

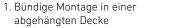
Technische Details

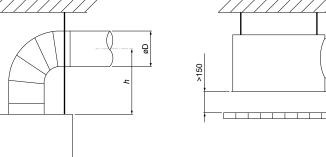
ANWENDUNG

LEGENDE

q_{v}	(m³•h-1)	- Luftvolumenstrom pro Auslass
Y	(m)	- Horizontaler Abstand zur Wand
Н	(m)	- Raumhöhe
H₁	(m)	- Abstand von der Decke bis zum Aufenthaltsbereich
H _o	(m)	- Aufenthaltsbereich
Ļ	(m)	- Wurfweite: an der Wand - L, = H, + Y zwischen den Durchlässen - L, = H, + A/2
V_{Lt}, V_{P}	(m•s-1)	- Luftgeschwindigkeit im Wurfabstand L_t , im Abstand H_t
ΔT_0	(K)	- Temperaturdifferenz zwischen Zuluft und Raumluft
ΔT_{L}	(K)	- Differenz zwischen Luftströmungskern und Raumlufttemperatur
A, B	(m)	- Abstand zwischen den Durchlässen nach Länge und Breite des Raumes (A = Abstand zwischen den Säulen, B = Abstand zwischen den Reihen)


2. Freihängende Deckenmontage


 $h_{min} > (3 \sim 5) D$

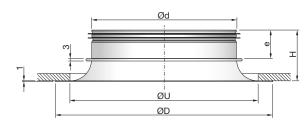

Montage

Der Dralldurchlass ODS-5 wird mit Hilfe des Anschlusskastens an die Luftleitung angeschlossen und durch die mitgelieferte Zentralschraube in diesem befestigt.

In der Abbildung werden verschiedene Installationsmethoden dargestellt. Bei der Installation in einer Zwischendecke ist eine Reduktion der Luftverteilung zu erwarten. Daher ist ein Mindestabstand von 150 mm einzuhalten.

2. Installation in einer Zwischendecke

Drallluftdurchlass ODL-7



Beschreibung

ODL-7 ist ein runder, deckenbündiger Dralldurchlass mit eingesetzten Drallschaufeln und angeformter Düse für Zuluft. Die Lamellen und die Düse erzeugen eine sehr hohe Induktion mit einem sehr großen Dynamikbereich. Der Durchlass ist daher ideal für den Kühlfall. Vertikaler Anschlussstutzen mit Safe. In Verbindung mit dem Anschlusskasten wird eine einfache Montage, eine zusätzliche akustische Dämpfung, eine Volumenstromeinstellung und eine gleichmäßige Anströmung zum Durchlass gewährleistet. ODL-7 kann direkt im Rohr oder Anschlusskasten montiert werden.

- Großer Dynamikbereich
- Hohe Induktion
- Geeignet für Kühlung mit großer Untertemperatur
- Anschlusskasten mit verschiedenen Drosselvarianten

Dimensionen

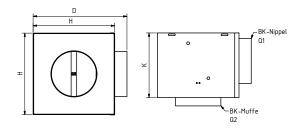
ODL Ød	ØD	Н	е	ØU*	Freier Querschnitt A	m
mm	mm	mm	mm	mm	m ²	kg
125	225	70	40	200	0,0091	0,5
160	250	70	40	225	0,0146	0,6
200	300	70	40	275	0,0225	0,8
250	350	90	60	325	0,0345	1,2
315	415	90	60	390	0,0537	1,6
400	520	120	80	485	0,085	2,4

ØU = Ausschnittsmaß

Wartung

Der Durchlass kann mittels zentraler Befestigungsschraube zu Reinigungszwecken des Kanalsystems demontiert werden. Der Durchlass kann bei Bedarf mit einem feuchten Tuch gereinigt werden.

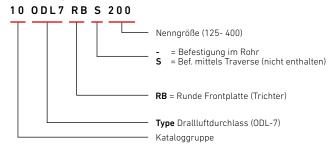
Material und Ausführung


Material: Stahl

Standardausführung: Pulverbeschichtet Standardfarbe: RAL 9010

Der Durchlass ist in anderen Farben erhältlich. Weitere Informationen erhalten Sie auf Anfrage.

Ausführung Anschlusskasten


Artikel- nummer	ODL	D (mm)	H (mm)	K (mm)	Q1 - Nippel (mm)	Q2 - Muffe (mm)
	125	248,5	205	195	125	125
	160	333,5	290	230	160	160
ODL7-	200	333,5	290	230	160	200
AK	250	433,5	390	270	160	250
	315	533,5	490	270	200	315
	400	653,5	590	320	250	400

ARTIKELSCHLÜSSEL

Anschlusskasten

10 ODL7 AK GR200 Nenngröße (100 400) AK = Anschlusskasten Type Drallluftdurchlass ODL-7 Kataloggruppe

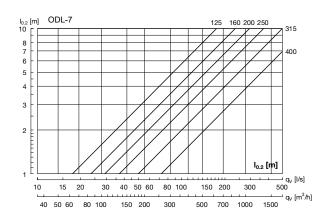
Ausführung ohne Anschlusskasten

Die nachfolgenden Werte gelten für ODL-7 + ODL-7 AK.

Leistung

Die Diagramme zeigen den Gesamtdruckverlust Δp_t [Pa], Wurfweite I_{02} [m] sowie Schallleistungspegel L_{WA} [dB(A)] als Funktion des Volumenstromes q_v [l/s, m³/h].

Frequenzabhängiger Schallleistungspegel


Der Schallleistungspegel im Frequenzbereich wird durch $L_{WA} + K_{ok}$ definiert. Die Werte für K_{ok} werden in Tabellen unter den folgenden Diagrammen angegeben.

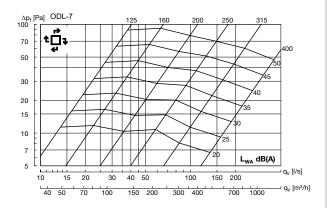
Schnellauswahl, Zuluft

ODL-7 +	ODL-7 AK	∆ p _t ≥	50 Pa	∆p _t ≥ 50 Pa		
Rohr	Rohr ODL-7		IB(A)	35 dB(A)		
Ød ₁	$\emptyset d_2$	l/s m³/h		l/s	m³/h	
125	125	20	72	24	86	
160	160	34	122	41	148	
160	200	48	173	59	212	
200	315	90	324	111	400	
250	400	109	392	143	515	

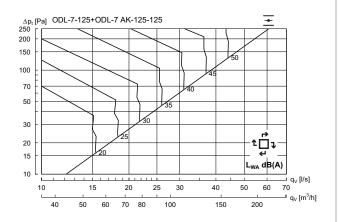
Wurfweite I_{0.2}

Die Wurfweite $I_{0,2}$ [m] wird bei einer Endgeschwindigkeit von 0,2 m/s angegeben.

Eigendämpfung

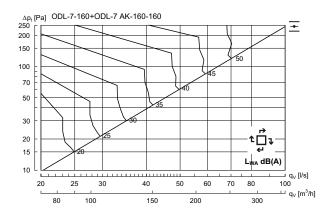

Eigendämpfung der Durchlässe ΔL zwischen Rohr-/Kanalsystem und Raum, einschließlich Mündungsreflexion.

ODL-7 + 0	DDL-7 AK								
Rohr	Mittelfrequenz Hz								
Ød ₁	$\emptyset d_2$	63	125	250	500	1K	2K	4K	8K
125	125	17	15	9	21	17	19	18	20
160	160	18	15	9	22	18	17	19	20
160	200	17	15	8	21	17	16	18	19
200	315	11	8	3	13	15	13	16	16
250	400	14	5	4	12	13	13	14	16

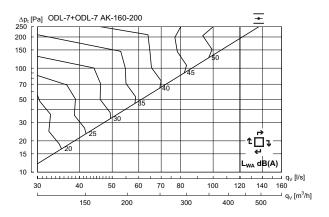


Technische Daten

ODL-7 ohne Anschlusskasten – Zuluft



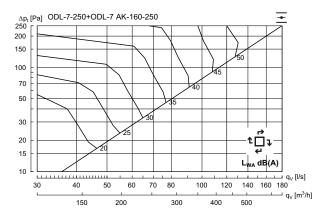
ODL-7 125 + ODL-7 AK - Zuluft


Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	14	5	2	-3	-7	-10	-20	-31

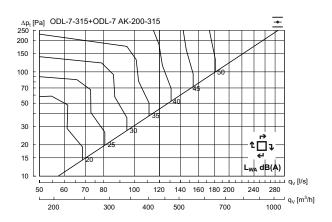
ODL-7 160 + ODL-7 AK - Zuluft

ŀ	Ηz	63	125	250	500	1K	2K	4K	8K
ŀ	⟨ _{ok}	5	7	3	-2	-7	-11	-22	-34

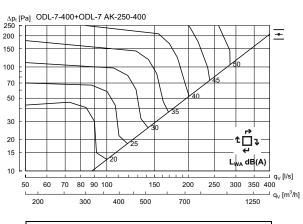
ODL-7 200 + ODL-7 AK - Zuluft



I	Hz	63	125	250	500	1K	2K	4K	8K
I	Kok	11	7	3	-3	-7	-12	-22	-34


Technische Daten

ODL-7 250 + ODL-7 AK - Zuluft


Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	12	6	3	-3	-7	-12	-20	-29

ODL-7 315 + ODL-7 AK - Zuluft

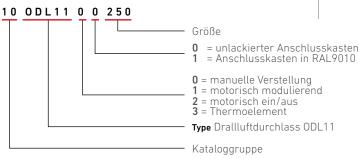
Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	9	7	3	500	-6	-13	-22	-31

ODL-7 400 + ODL-7 AK - Zuluft

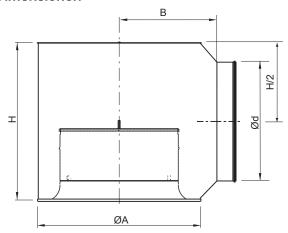
Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	9	6	2	-3	-5	-11	-19	-28

Drallluftdurchlass ODL-11

Beschreibung


Der ODL-11 ist ein verstellbarer Dralldurchlass mit integriertem Anschlusskasten (ohne Mengenregulierung), speziell geeignet bei großen Deckenhöhen (4-12 m). Mit Hilfe der verstellbaren Luftlenklamellen kann zwischen horizontalem und vertikalem Strahlbild variiert werden. Die Verstellung der Lamellen erfolgt manuell, motorisch oder thermisch. Der ODL-11 mit manueller Verstellung wird standardmäßig mit 30° Lamellenstellung ausgeliefert, die motorischen Modelle mit einem Verstellbereich von 30° bis 75°. Bei motorischem Antrieb sind on/off oder stetig regelbare Stellmotoren möglich. Außerdem ist eine Ausstattung mit Thermoelement möglich, bei der automatisch an die Zulufttemperatur Lamellenstellung angepasst wird.

- · Geeignet für Kühlen und Heizen
- · Horizontale oder vertikal e Lamellenstellungen möglich
- · Hohe Induktion
- · Lieferbar mit elektrischem Stellantrieb
- · Lieferbar mit thermi schem Stellantrieb


Wartung

Die sichtbaren Teile des Durchlasses können mit einem feuchten Tuch abgewischt werden. Zur weiteren Wartung siehe die Installationsanweisungen.

ARTIKELSCHLÜSSEL

Dimensionen

Größe	ØA mm	H mm	B mm	Ød Anschluss	Gewicht * kg
250	360	415	250	250	5.70
315	460	480	300	315	8.20
400	560	570	350	400	11.8
500	670	670	412	500	17.2
630	870	800	500	630	25.7

^{*} Motorisierte Modelle haben ein Gewicht, das ca. 1 kg über dem in der Tabelle oben angegebenen Gewicht liegt.

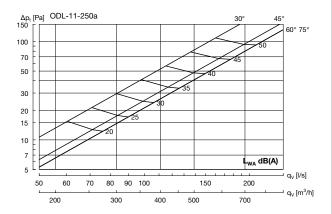
Motortyp

ODL-11 -1 Ød	Motor
315-400	NM24A-MF-F
500-630	LH24A-MF60

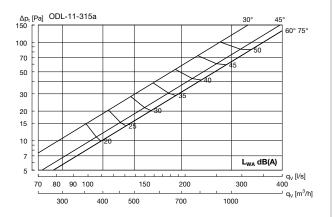
ODL-11 -2 Ød	Motor
250-400	NM24A-F
500-630	LH24A60

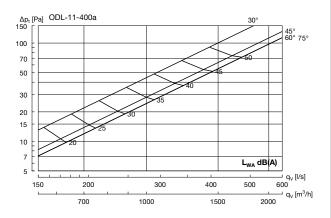
Wartung

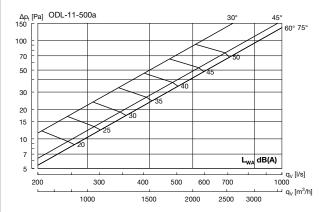
Die sichtbaren Teile des Durchlasses können mit einem feuchten Tuch abgewischt werden. Zur weiteren Wartung siehe die Installationsanweisungen.

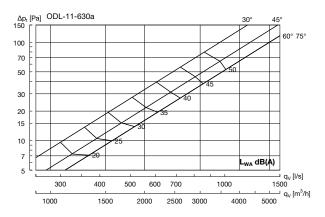

Material und Ausführung:

Material: Aluminium und Stahlblech Standardausführung: Pulverbeschichtet Standardfarbe: RAL 9010 Anschlusskasten: verzinkter Stahl


Dralldurchlass in anderen Farben erhältlich. Weitere Informationen erhalten Sie auf Anfrage.

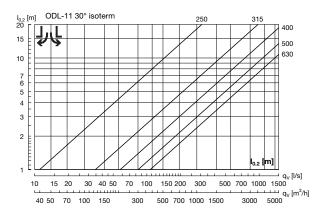

Technische Daten


Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	5	0	-5	-4	-3	-9	-17	-26

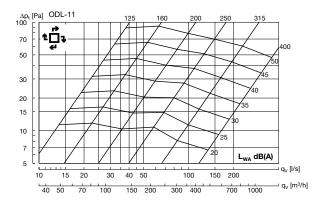

Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	7	-1	-4	-3	-3	-10	-19	-27

Hz	63	125	250	500	1K	2K	4K	8K
Hz K _{ok}	8	0	-5	-2	-3	-11	-20	-28

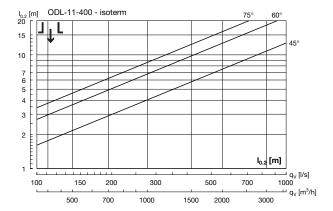
Hz	63	125	250	500	1K	2K	4K	8K
K _{ok}	8	2	-3	-2	-4	-11	-21	-30

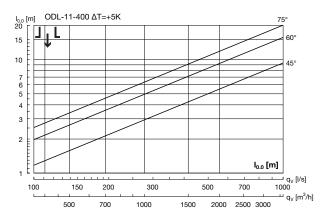


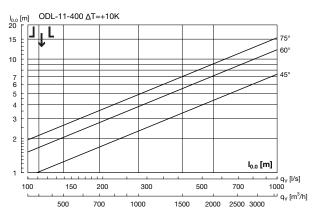
				500					
K _{ok}	7	-1	-3	-1	-4	-13	-24	-33	

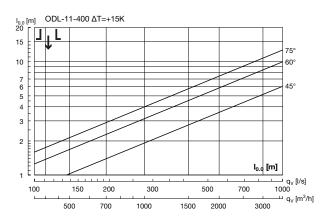

Horizontale Wurfweite I_{0,2}

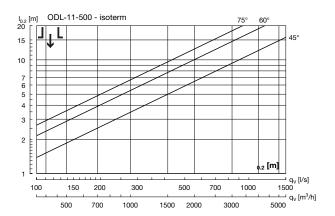
Die horizontale Wurfweite $l_{0,2}$ ist für freie Aufhängung angegeben. Wenn der Durchlass weniger als 300 mm von der Decke entfernt montiert wird, muss der Wert mit 1,4 multipliziert werden.

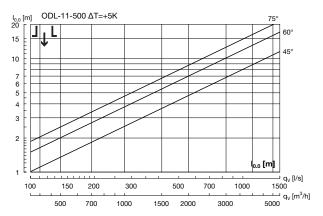


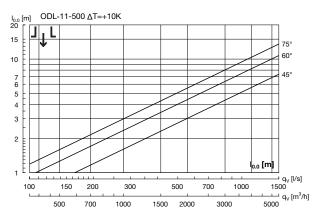

Technische Daten

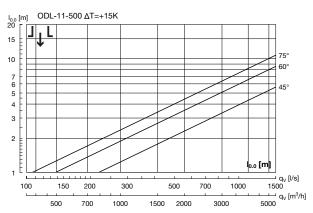

ODL-11 ohne Anschlusskasten – Zuluft

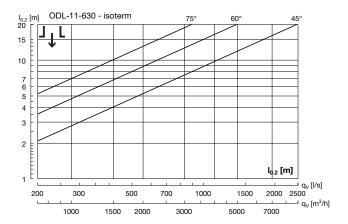


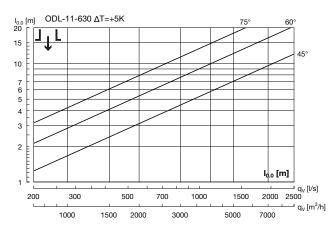


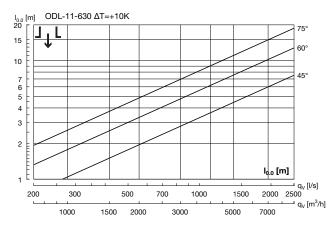


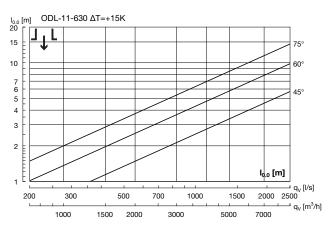


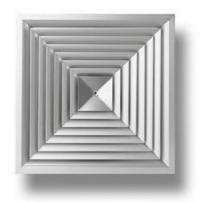










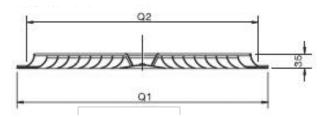


Deckenluftdurchlässe KDS-1

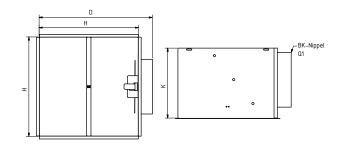
Beschreibung

KDS-1 ist ein 4-Wege-Luftdiffusor für die Deckenmontage. Er kann als Endlüftungselement für Zu- und Abluft verwendet werden. Das Produkt eignet sich perfekt für Büros, Geschäfte, oder ähnliche Räumlichkeiten. Der Luftdiffusor kann sowohl zum Heizen als auch zum Kühlen mit $\Delta T \pm 10$ K eingesetzt werden.

Montage

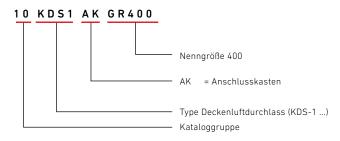

Die Stirnseite kann entweder in die T-Profil-Decke eingesetzt, oder mit einer mittig sitzenden Schraube am Anschlusskasten verschraubt werden.

Die Schraube wird mit einer Kunststoffkappe geliefert.

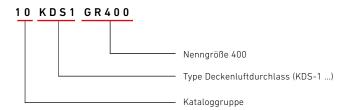

Design

Die KDS-1-Gitter sind aus eloxiertem Aluminium, ähnlich wie RAL 9006, gefertigt. In sechs Größen von 250 bis 625 mm erhältlich.

Ausführung Frontplatte


Ausführung Anschlusskasten

Artikel-	KDS-1	D	Н	K	Q1 - Nippel
nummer	KD2-1	(mm)	(mm)	(mm)	(mm)
	250	248,5	205	230	160
	300	298,5	255	230	160
KDS-1-	400	398,5	355	270	200
AK	500	518,5	455	320	250
	600	618,5	555	385	315
	625	643,5	580	385	315


ARTIKELSCHLÜSSEL

Anschlusskasten

ARTIKELSCHLÜSSEL

Ausführung ohne Anschlusskasten

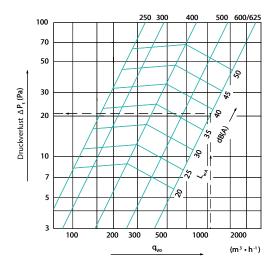
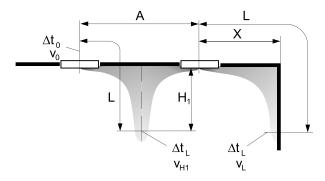


Diagramm: Bestimmung von Volumenstrom und Druckverlust für Zuluft KDS-1 mit Anschlusskasten

Größe		0°	45°	90°
250	$\Delta p_{_{t}}$ L _{wa}	× 1,0 -	× 1,1	× 1,7 1
300	Δp _t L _{wa}	× 1,0 -	× 1,1 -	x 2,6 2
400	Δp _t L _{wa}	× 1,0 -	× 1,2 1	× 3,0 3
500	Δp _t L _{wa}	× 1,0 -	× 1,3	× 3,4 3
600	Δp _t L _{wA}	× 1,0 -	× 1,2 2	× 3,6
625	Δp _t L _{wa}	× 1,0 -3	× 1,2 -	× 3,6

Korrekturen am Diagramm

					250	300)	400	500)		
	100						/					
	70					1	_	K		/		600
_ †	50				1		7		\mathcal{J}			625
P (Pa)	30		F	1			/		\wedge		05	
Druckverlust ΔP _t (Pa)	20	F		1		Z	\	X		8		
Dri	10		/				$ \overline{X} $		35.	/		
'	7 5					X		1/ 1	1 30 1 4 08(4)			
	3		/	/		500		0				
		100	20	0 30		500 A _{vo}		1000)	2000 (m³ •		


Diagramm: Bestimmung von Volumenstrom und Druckverlust für Abluft KDS-1 mit Anschlusskasten

Größe		0°	45°	90°
250	$\Delta p_{_{t}}$ L _{wa}	× 1,0 -	× 1,1 -	× 1,7
300	Δp _t	× 1,0	x 1,2	x 1,9
	L _{wa}	-	2	4
400	Δp _t	× 1,0	x 1,3	× 2,6
	L _{wa}	-	1	4
500	Δp _t	× 1,0	× 1,5	x 3,6
	L _{wa}	-	1	6
600	Δp _t	× 1,0	x 1,8	x 4,1
	L _{wa}	-	1	7
625	Δp _t L _{wA}	× 1,0 -3	× 1,9 -1	× 4,1

Korrekturen am Diagramm

Technische Daten

Freier Querschnitt

Größe	250	300	400	500	600	625
S ₀ [m ²]	0,0095	0,0175	0,0370	0,0675	0,1100	0,1230

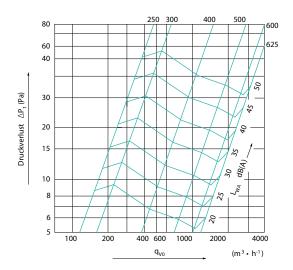


Diagramm: Bestimmung von Volumenstrom und Druckverlust für KDS-1

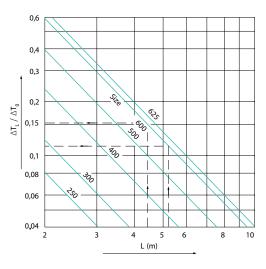


Diagramm: Temperaturdifferenz bezogen auf Bereich L

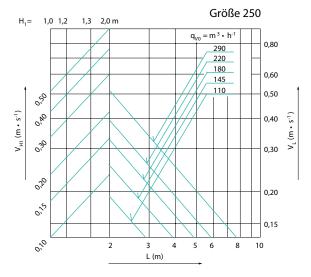
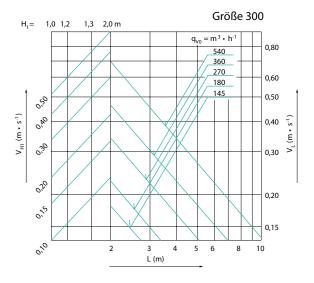
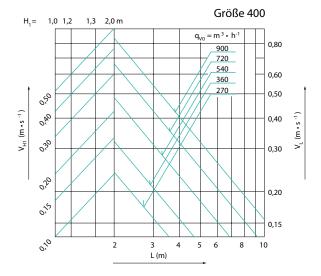
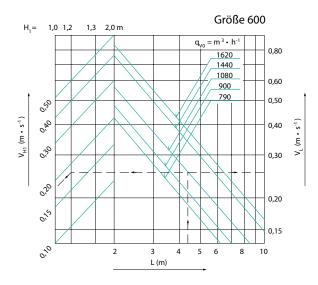




Diagramm: Durchschnittliche Luftströmungsgeschwindigkeit

 ${\it Diagramm: Durchschnittliche Luftstr\"{o}mungsgeschwindigkeit}$



Größe 500 1,0 1,2 1,3 2,0 m $q_{V0} = m^3 \cdot h^{-1}$ 0,80 1080 900 720 0,60 540 485 0,50 0,50 V_{H1} (m·s -1) V, (m • s · ¹) 010 0,40 30 0,30 0,20 0,20 0,5 0,15 2 5 6 8 10 L (m)

Diagramm: Durchschnittliche Luftströmungsgeschwindigkeit

Diagramm: Durchschnittliche Luftströmungsgeschwindigkeit

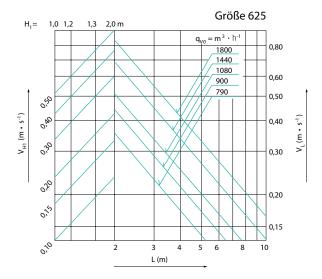


Diagramm: Durchschnittliche Luftströmungsgeschwindigkeit

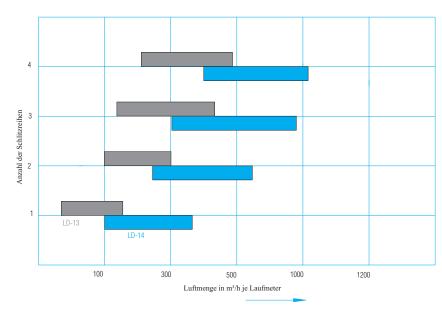
 ${\it Diagramm: Durch schnittliche Luft str\"{o}mung sgeschwindig keit}$

Legende

L_{WA}	[dB(A)]	- Schallleistungspegel
Δp_t	(Pa)	– Druckverlust
Δt _o	(K)	– Temperaturdifferenz zwischen Raumtemperatur und Zulufttemperatur
$\Delta t_{_{L}}$	(K)	– Temperatur differenz zwischen Raumtemperatur und Temperatur in Bereich $\mathbf{H}_{_{1}}$
Α	(m)	– Abstand zwischen zwei Auslässen
H,	(m)	– Abstand zwischen Haltezone und Decke
V _{H1}	(m • s ⁻¹)	 Durchschnittliche Luftströmungsgeschwindigkeit zwischen zwei Auslässen innerhalb von Abstand H₁
V ₀	(m • s ⁻¹)	– Luftgeschwindigkeit im auslassfreien Querschnitt
q _{vo}	(m³ • h-1)	 Zuluft-Volumenstrom durch den Auslass
S _o	(m ²)	– Auslassfreier Querschnitt
L	(m)	– Wurflänge
V _L	(m • s ⁻¹)	– Durchschnittliche Luftströmungsgeschwindigkeit innerhalb von Abstand L

Schlitzauslässe - LD 13 / LD 14

LD-13


Anwendung:

Schlitzdurchlässe der Typen LD – 13 und LD – 14 werden zum Einbringen von Luft in Räumen mit einer lichten Raumhöhe von 2,5 m bis zu 4 m verwendet. Sie sind für den Kalt- oder Warmlufteintrag geeignet, insbesonders für Räume mit erhöhten Anforderungen an die Behaglichkeit. Auf Grund des hohen Induktionsverhaltens am Luftdurchlass sind die Schlitzdurchlässe auch für variable Systeme geeignet, da im Betrieb eine rasche Angleichung der Temperaturdifferenz zwischen Zuluft und Raumluft erfolgt.

Beschreibung:

Die Schlitzdurchlässe der Typen LD – 13 und LD – 14 sind in den Ausführungen mit 1,2,3 oder 4 Schlitzreihen verfügbar. Die Front des Durchlasses wird aus eloxierten Aluminiumprofilen hergestellt, in denen einzeln einstellbare Kunststoffgleichrichter eingesetzt sind. In Standardausführung, wenn keine Angaben zur Ausführung bekannt gegeben werden, sind die Gleichrichter in schwarzer Farbe ausgeführt, auf Wunsch auch in weißer Farbe lieferbar. Mit Hilfe der Gleichrichter kann die Menge der zugeführten Luft, als auch die Lufteinblasrichtung, stetig eingestellt werden. Der zum Anschluss an das Luftleitungssystem notwendige Anschlusskasten ist aus verzinktem Stahlblech hergestellt zur Mengenregulierung mit einer Regulierklappe ausgestattet. Über die Frontseite des Durchlasses wird über die Regulierklappe die gewünschte Luftmenge je Durchlass eingestellt.

Schnellauswahl:

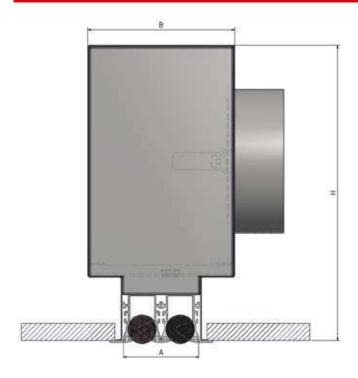


Diagramm zur Schnellauswahl LW_A<35 dB(A)

Technische Daten für einschlitzigen Auslass je Laufmeter bei horizontaler Lufteinblasung:

	A(m²)	\dot{V} (m 3 /h)	L _{WA} (dB)
LD-13	0,0092	135	34
LD-14	0.0136	210	28

Abmessungen					
Schlitze	A [mm]	B [mm]	H* [mm]	max ølL	
LD 13 -1	33	95	222	125	
LD 13 - 2	67	129	257	160	
LD 13 - 3	101	162	257	160	
LD 13 - 4	135	196	297	200	

Abmessungen				
Schlitze	A [mm]	B [mm]	H* [mm]	max ølL
LD 14 -1	44	106	269	160
LD 14 - 2	89	150	269	160
LD 14 - 3	133	195	309	200
LD 14 - 4	178	240	309	200

Größe der Einbauöffnung: A + 15mm / L + 15mm

^{*)} Höhenangabe betrifft Kästen mit Standard-IL, ohne Isolierung

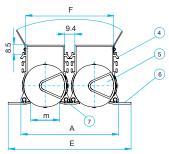
Typenbezeichnung

Einreihige Ausführung	LD 13 / 1	LD 14 / 1
Zweireihige Ausführung	LD 13 / 2	LD 14/2
Dreireihige Ausführung	LD 13 / 3	LD 14/3
Vierreihige Ausführung	LD 13 / 4	LD 14/4

Standardlängen

Die Schlitzdurchlässe der Typen LD – 13 und LD – 14 werden mit den erforderlichen Anschlusskästen in den Standardlängen von 300 mm bis zu 2.000 mm hergestellt. Bei größeren Längen erfolgt das Verbinden der Schlitzauslässe mittels geeigneten Verbindungselementen.

Sonderanfertigungen


Auf Kundenwunsch sind die Schlitzdurchlässe in allen Zwischenlängen lieferbar. Die Front des Durchlasses, sowie die Kunststoffgleichrichter können auf Wunsch in jeder gewünschten RAL – Farbe ausgeführt werden.

Abmessungen

Länge	300 bis 1000 mm 1100		1100 bis 1	1100 bis 1500 mm		000 mm
	Anzahl und Durchmesser der Anschlüsse am Anschlusskasten					
Schlitzanzahl	LD-13	LD-14	LD-13	LD-14	LD-13	LD-14
SCHIILZanzani	ø (mm)	ø (mm)	ø (mm)	ø (mm)	ø (mm)	ø (mm)
1	1 x 98	1 x 123	2 x 98	2 x 123	2 x 123	2 x 138
2	1 x 138	1 x 158	2 x 123	2 x 138	2 x 138	2 x 158
3	1 x 158	1 x 198	2 x 138	2 x 158	2 x 158	2 x 198
4	1 x 198	1 x 223	2 x 158	2 x 198	2 x 198	2 x 223

Die Anzahl der Anschlussstutzen muss über die erforderliche Luftmenge angepasst werden.

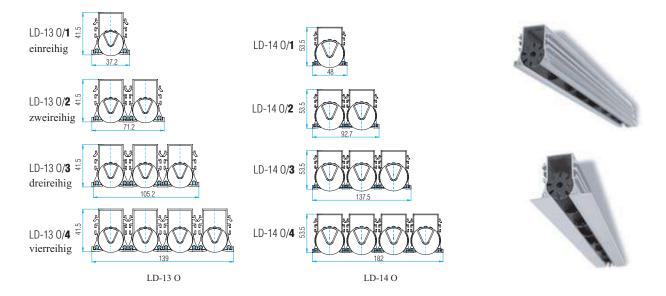
Hauptabmessungen und Aufbau

Einbauöffnungen: (A+5) x (L+15)

LD-13

Schlitzanzahl	A	E	F
Schitzanzani	(mm)	(mm)	(mm)
1	33	56	24,4
2	67	90	58.2
3	101	124	92.0
4	135	158	125.8

LD-14


C-1-124	A	E	F
Schlitzanzahl	(mm)	(mm)	(mm)
1	44	67.5	35.3
2	89	112	80.0
3	133	157	124.7
4	178	201.5	169.4

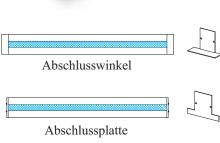
Schmale Ausführung – Schlitzdurchlasstypen LD-13 O und LD-14 O

Der Unterschied zwischen der schmalen Ausführung und der Standarsausführung liegt in der Gestaltung der seitlichen Abschlussleisten am Schlitzdurchlass, wobei mit der schmalen Ausführung geringere Einbaubreiten erreicht werden. Durch diese Ausführung wird eine steifere Ausbildung der Abschlussleiste und somit eine höhere Festigkeit am Produkt erzielt.

Erfolgt der Einbau der Schlitzdurchlässe in eine geschlossene Zwischendecke, ist unbedingt auf die geeignete Befestigung des Schlitzdurchlasses am Anschlusskasten, sowie auf die gewünschte Ausführung der seitlichen Abdeckleisten zu achten.

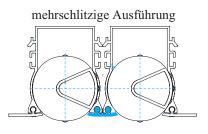
Ausführungsvarianten

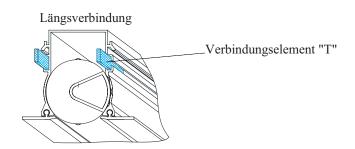
Die Gestaltung der Schlitzdurchlässe kann in linearer Ausführung oder in Eckausführung erfolgen. In der Eckausführung können lineare Schlitzdurchlassbänder in Deckenecken einfach verbunden werden. Eine Einstellung der Luftstrahlrichtung mittels der Gleichrichter in der Eckausführung kann nicht realisiert werden.


Walzengleichrichter

Die Walzengleichrichter im Schlitzdurchlass dienen zur Regulierung der Lufteinblasrichtung. Standardmäßig sind diese in schwarzer, wenn nichts angegeben, oder auf Wunsch in weißer Farbe ausgeführt. Zusätzlich besteht die Möglichkeit der Ausführung in jeder gewünschten RAL – Farbe.

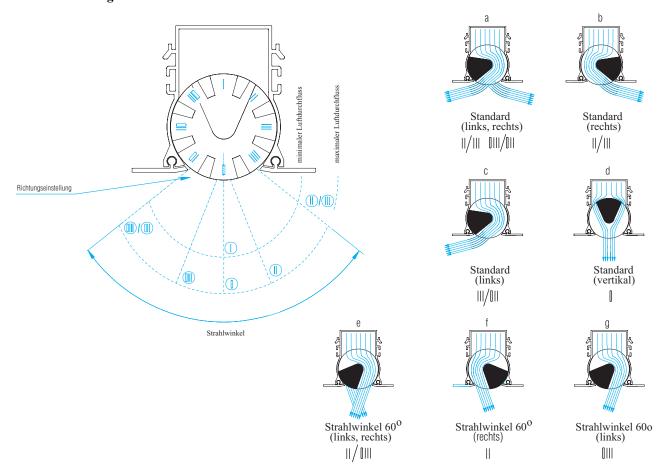
Abschlusselemente


Die Abschlusselemente für den Schlitzdurchlass sind in zwei Ausführungen, als Abschlusswinkel oder als Abschlussplatte, je einseitig oder beidseitig, erhältlich.

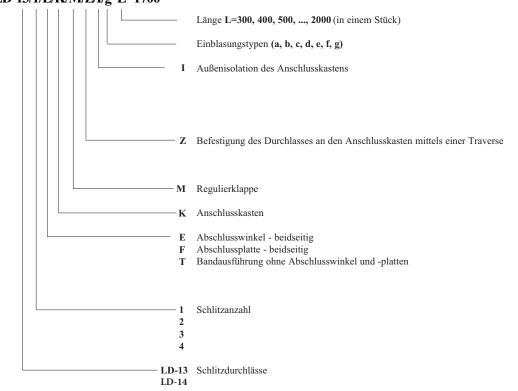

Verbinden von Schlitzdurchlässen

Längsverbindung: Werden mehrere Schlitzdurchlasselemente, für größere Längen, hintereinander angeordnet, so sind für deren Zusammenbau Verbindungselemente - Verbindungslaschen der Type T erforderlich.

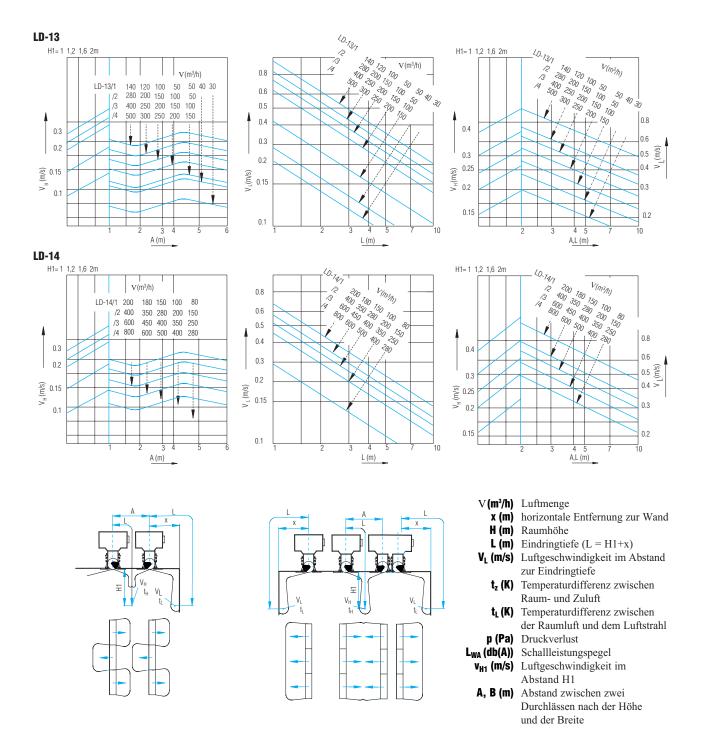
Mehrschlitzige Ausführung: Bei mehrschlitzigen Ausführungen werden die einzelnen Aufnahmeprofile für die Walzengleichrichter mit den Verbindungsprofilen formschlüssig verbunden.



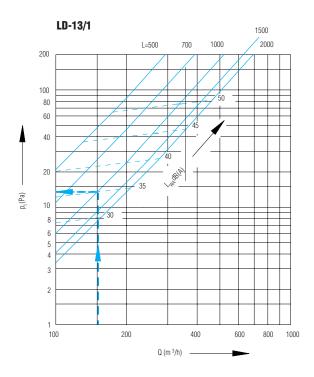
Verbindungsprofil bei mehrschlitziger Ausführung.

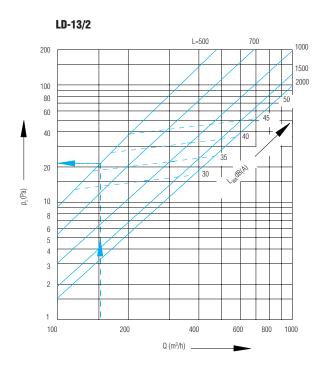


Einblasrichtungen



Artikelnummer: LD-13/1/E/K/M/Z/I/g L=1700




Diagramm zur Bestimmung der Luftgeschwindigkeit in Abhängigkeit der Wurfweite und Abstände zwischen den Schlitzdurchlässen.

Druckverlust und Schallleistungspegel

Korrekturfaktor für LD-13/1

Einblasrichtung	ver	tikal	horizontal		
Regulierklappe	geöffnet	geschlossen	geöffnet	geschlossen	
L=500	x 1	x 1,44	x 0,87	x 1,34	
L=700	x 1	x 2,17	x 0,92	x 2,04	
L=1000	x 1	x 3,30	x 0,85	x 3,02	
L=1500	x 1	x 5,26	x 0,84	x 4,47	
L=2000	x 1	x 7 37	x 0.81	x 5 68	

Korrekturfaktor für LD-13/2

Einblasrichtung	vertikal		horizontal	
Regulierklappe	geöffnet	geschlossen	geöffnet	geschlossen
L=500	x 1	x 1,91	x 0,86	x 1,79
L=700	x 1	x 2,84	x 0,83	x 2,89
L=1000	x 1	x 5,91	x 0,70	x 5,31
L=1500	x 1	x 9,88	x 0,58	x 8,67
L=2000	x 1	x 14 10	x 0 47	x 11 99

Beispiel:

 $\begin{array}{ll} Luftmenge: & V = 150 \ m^3/h \\ L\ddot{a}nge: & L = 1000 \ m \end{array}$

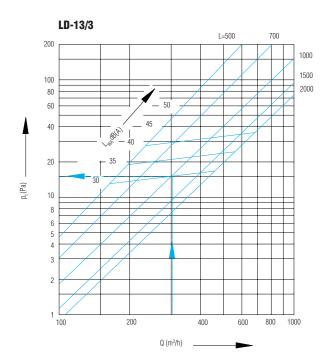
Druckverlust: $\Delta pt = 14 \text{ Pa (vertikal, Klappe geöffnet)}$

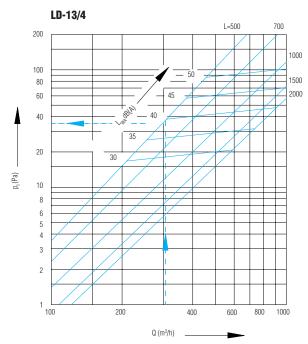
Druckverlust: $\Delta pt = 14 \times 3,30 = 46,2 \text{ Pa (horizontal, Klappe geschlossen)}$ Druckverlust: $\Delta pt = 14 \times 0,85 = 11,9 \text{ Pa (horizontal, Klappe geöffnet)}$ Druckverlust: $\Delta pt = 14 \times 3,02 = 42,3 \text{ Pa (horizontal, Klappe geschlossen)}$

Schallleistungspegel: Lwa = 35 dB(A)

Beispiel:

 $\begin{array}{ll} \text{Luftmenge:} & V = 150 \text{ m}^3\text{/h} \\ \text{Länge:} & L = 500 \text{ m} \end{array}$


Druckverlust: Δpt = 22 Pa (vertikal, Klappe geöffnet)


Druckverlust: $\Delta pt = 22 \times 1,91 = 42,0$ Pa (horizontal, Klappe geschlossen) Druckverlust: $\Delta pt = 22 \times 0,86 = 18,9$ Pa (horizontal, Klappe geöffnet) Druckverlust: $\Delta pt = 22 \times 1,79 = 39,4$ Pa (horizontal, Klappe geschlossen)

Schallleistungspegel: Lwa = 36 dB(A)

Druckverlust und Schallleistungspegel

Korrekturfaktor für LD-13/3

Einblasrichtung	vertikal		ho	rizontal
Regulierklappe	geöffnet	geschlossen	geöffnet	geschlossen
L=500	x 1	x 2,37	x 0,84	x 2,24
L=700	x 1	x 3,50	x 0,73	x 3,75
L=1000	x 1	x 8,52	x 0,56	x 7,59
L=1500	x 1	x 14,50	x 0,32	x 12,86
L=2000	x 1	x 20.82	x 0 18	x 18 29

Korrekturfaktor für LD-13/4

Einblasrichtung	vert	ikal	hori	zontal
Regulierklappe	ulierklappe geöffnet		geöffnet	geschlossen
L=500	x 1	x 3,08	x 0,70	x 2,91
L=700	x 1	x 4,56	x 0,61	x 4,87
L=1000	x 1	x 11,07	x 0,47	x 9,87
L=1500	x 1	x 18,85	x 0,27	x 16,72
L=2000	x 1	x 27,07	x 0,15	x 23,78

Beispiel:

 $\begin{array}{ll} \text{Luftmenge:} & V = 300 \text{ m}^3 / \text{h} \\ \text{Länge:} & L = 1000 \text{ m} \end{array}$

Druckverlust: $\Delta pt = 15 \text{ Pa (vertikal, Klappe geöffnet)}$

 $\begin{array}{ll} Druckverlust: & \Delta pt = 15 \ x \ 8,52 = 127,8 \ Pa \ (horizontal, \ Klappe \ geschlossen) \\ Druckverlust: & \Delta pt = 15 \ x \ 0,56 = 8,4 \ Pa \ (horizontal, \ Klappe \ geöffnet) \\ Druckverlust: & \Delta pt = 15 \ x \ 7,59 = 113,8 \ Pa \ (horizontal, \ Klappe \ geschlossen) \\ \end{array}$

Schallleistungspegel: Lwa = 30 dB(A)

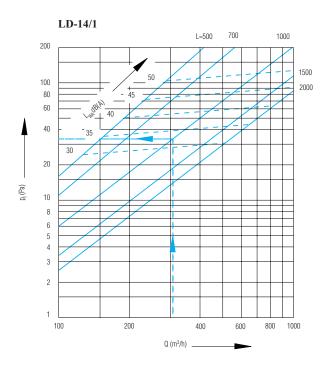
Beispiel:

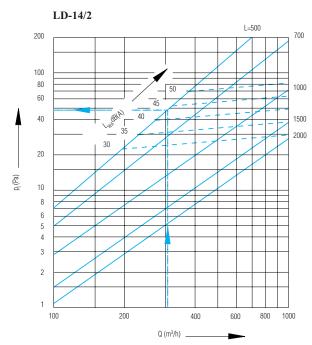
 $\label{eq:V} \begin{array}{ll} Luftmenge: & V = 300 \ m^3/h \\ L\ddot{a}nge: & L = 500 \ m \end{array}$

Druckverlust: $\Delta pt = 35 \text{ Pa (vertikal, Klappe geöffnet)}$

Druckverlust: $\Delta pt = 35 \text{ ra}$ (Verlust, Klappe geschlessen)

Druckverlust: $\Delta pt = 35 \text{ x}$ 3,08 = 107,8 Pa (horizontal, Klappe geschlossen)


Druckverlust: $\Delta pt = 35 \text{ x}$ 0,70 = 24,5 Pa (horizontal, Klappe geöffnet)


Druckverlust: $\Delta pt = 35 \text{ x}$ 2,91 = 101,8 Pa (horizontal, Klappe geschlossen)

Schallleistungspegel: Lwa = 36 dB(A)

Druckverlust und Schallleistungspegel

Korrekturfaktor für LD-14/1

Einblasrichtung	ver	tikal	horizontal			
Regulierklappe	geöffnet	geöffnet geschlossen		geschlossen		
L=500	x 1	x 1,81	x 0,76	x 1,31		
L=700	x 1	x 2,22	x 0,62	x 1,75		
L=1000	x 1	x 3,83	x 0,42	x 3,23		
L=1500	x 1	x 5,80	x 0,28	x 5,11		
L=2000	x 1	x 7.87	x 0.19	x 7.07		

Korrekturfaktor für LD-14/2

Einblasrichtung	vert	ikal	horizontal			
Regulierklappe	geöffnet	geschlossen	geöffnet	geschlossen		
L=500	x 1	x 2,11	x 0,53	x 1,59		
L=700	x 1	x 3,15	x 0,41	x 2,67		
L=1000	x 1	x 8,84	x 0,29	x 7,96		
L=1500	x 1	x 15,36	x 0,20	x 14,14		
L=2000	x 1	x 22.32	x 0.14	x 20.70		

Beispiel:

 $\label{eq:V} \begin{array}{ll} Luftmenge: & V = 300 \ m^3/h \\ L\ddot{a}nge: & L = 1000 \ m \end{array}$

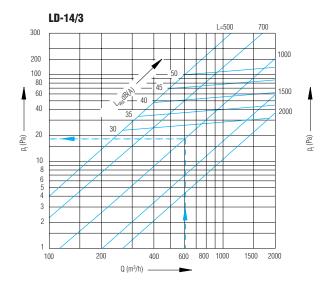
Druckverlust: Δpt = 33 Pa (vertikal, Klappe geöffnet)

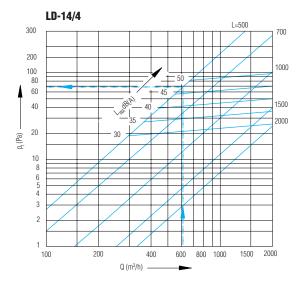
 $\begin{array}{ll} \mbox{Druckverlust:} & \Delta pt = 33 \times 3,83 = 126,4 \mbox{ Pa (horizontal, Klappe geschlossen)} \\ \mbox{Druckverlust:} & \Delta pt = 33 \times 0,42 = 14,0 \mbox{ Pa (horizontal, Klappe geöffnet)} \\ \mbox{Druckverlust:} & \Delta pt = 33 \times 3,23 = 107,0 \mbox{ Pa (horizontal, Klappe geschlossen)} \\ \end{array}$

Schallleistungspegel: Lwa = 32 dB(A)

Beispiel:

 $\label{eq:V} \begin{array}{ll} Luftmenge: & V = 300 \ m^3/h \\ L\ddot{a}nge: & L = 500 \ m \end{array}$


Druckverlust: Δpt = 47 Pa (vertikal, Klappe geöffnet)


Druckverlust: $\Delta pt = 47 \times 2,11 = 99,2 \text{ Pa (horizontal, Klappe geschlossen)}$ Druckverlust: $\Delta pt = 47 \times 2,13 = 99,2 \text{ Pa (horizontal, Klappe geöffnet)}$ Druckverlust: $\Delta pt = 47 \times 0,53 = 24,9 \text{ Pa (horizontal, Klappe geöffnet)}$ Druckverlust: $\Delta pt = 47 \times 1,59 = 74,7 \text{ Pa (horizontal, Klappe geschlossen)}$

Schallleistungspegel: Lwa = 43 dB(A)

Druckverlust und Schallleistungspegel

Korrekturfaktor für LD-14/3

Einblasrichtung	vert	ikal	horizontal			
Regulierklappe	geöffnet	geschlossen	geöffnet	geschlossen		
L=500	x 1	x 2,41	x 0,33	x 1,87		
L=700	x 1	x 4,07	x 0,24	x 3,60		
L=1000	x 1	x 13,86	x 0,19	x 12,69		
L=1500	x 1	x 24,92	x 0,16	x 23,17		
L=2000	x 1	x 36,76	x 0,13	x 31,33		

Korrekturfaktor für LD-14/4

Einblasrichtung	verti	kal	horizontal			
Regulierklappe	geöffnet geschlossen		geöffnet	geschlossen		
L=500	x 1	x 3,14	x 0,28	x 2,43		
L=700	x 1	x 5,30	x 0,21	x 4,68		
L=1000	x 1	x 18,02	x 0,15	x 16,50		
L=1500	x 1	x 32,34	x 0,13	x 28,12		
L=2000	x 1	x 47.79	x 0.10	x 39,63		

Beispiel:

 $\begin{array}{ll} \text{Luftmenge:} & V = 600 \text{ m}^3\text{/h} \\ \text{Länge:} & L = 1000 \text{ m} \end{array}$

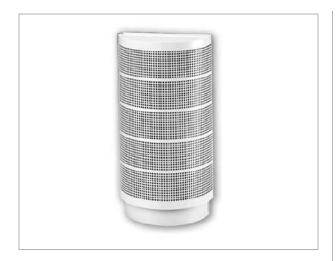
Druckverlust: Δpt = 18 Pa (vertikal, Klappe geöffnet)

 $\begin{array}{ll} Druckverlust: & \Delta pt = 18 \text{ x } 13,86 = 249,5 \text{ Pa (horizontal, Klappe geschlossen)} \\ Druckverlust: & \Delta pt = 18 \text{ x } 0,19 = 3,4 \text{ Pa (horizontal, Klappe geöffnet)} \\ Druckverlust: & \Delta pt = 18 \text{ x } 12,69 = 228,4 \text{ Pa (horizontal, Klappe geschlossen)} \\ \end{array}$

Schallleistungspegel: Lwa = 30 dB(A)

Beispiel:

 $\label{eq:V} \begin{array}{ll} Luftmenge: & V = 600 \ m^3/h \\ L\ddot{a}nge: & L = 500 \ m \end{array}$

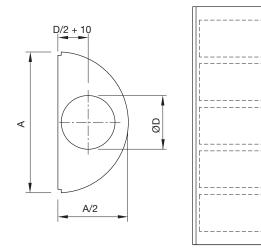

Druckverlust: Δpt = 70 Pa (vertikal, Klappe geöffnet)

Druckverlust: $\Delta pt = 70 \text{ x } 3,14 = 219,8 \text{ Pa (horizontal, Klappe geschlossen)}$ Druckverlust: $\Delta pt = 70 \text{ x } 0,28 = 19,6 \text{ Pa (horizontal, Klappe geöffnet)}$ Druckverlust: $\Delta pt = 70 \text{ x } 2,43 = 170,1 \text{ Pa (horizontal, Klappe geschlossen)}$

Schallleistungspegel: Lwa = 48 dB(A)

Quellluftdurchlass CBA

Beschreibung


Comdif CBA ist ein halbrunder, perforierter Verdrängungsauslass zur Installation an einer Wand oder Säule. Hinter der perforierten Frontplatte verfügt der CBA über einzeln einstellbare Düsen, mit denen die Geometrie des Nahbereichs angepasst werden kann. Der Auslass ist drehbar und verfügt über einen runden Kanalanschluss (MF-Maß), deshalb kann er von oben oder von unten angeschlossen werden. Der CBA eignet sich für die Zufuhr großer Luftmengen bei geringer Temperaturdifferenz.

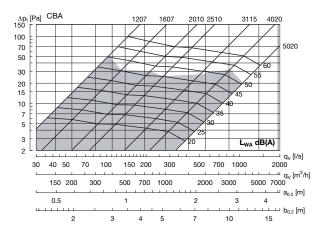
- Der Auslass eignet sich für die Zufuhr großer Luftmengen.
- Die Geometrie des Nahbereichs kann über einstellbare Düsen angepasst werden.
- Rohrverkleidung, Sockel und Konsolen zur Wandmontage sind als Zubehör lieferbar.

Wartung

Der Auslass ist wartungsfrei - die Gefahr der Verstopfung besteht nicht, da kein Filtervlies eingesetzt wird. Die Frontplatte kann jedoch zur Reinigung der Düsen entfernt werden. Die sichtbaren Teile des Auslasses können mit einem feuchten Tuch abgewischt werden.

Dimensionen

エ


		~~		
	Α	ØD	н	Gewicht
Größe	mm	mm	mm	kg
1207	350	125	710	6,50
1607	420	160	710	7,50
2010	500	200	970	13,0
2510	600	250	970	18,0
3115	730	315	1490	35,0
4020	900	400	2010	58,0
5020	1100	500	2010	78,0

Zubehör

Mit Rohrverkleidung, Sockel und Konsolen zur Wandmon-tage lieferbar.

Technische Daten

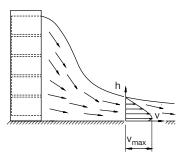
Empfohlener maximaler Volumenstrom

Der Nahbereich wird bei einer Temperaturdifferenz von -3 K bis zu einer maximalen Endgeschwindigkeit von 0,20~m/s angegeben.

Umrechnung auf andere Endgeschwindigkeiten – siehe Tabelle 1, Korrektur des Nahbereichs bei -3 K bzw. -6 K.

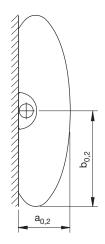
Schallleistungspegel

Schallleistungspegel L_W [dB] = $L_{WA} + K_{ok}$


		Mittelfrequenz Hz								
Größe	63	125	250	500	1K	2K	4K	8K		
1207	8	-3	0	1	-8	-15	-27	-38		
1607	10	-3	3	0	-8	-18	-30	-33		
2010	15	-2	3	0	-9	-16	-30	-37		
2510	10	-1	4	-1	-9	-16	-29	-41		
3115	11	1	4	-1	-8	-17	-30	-42		
4020	13	3	4	-1	-9	-17	-30	-43		
5020	7	2	2	0	-6	-16	-19	-17		

Eigendämpfung

Eigendämpfung ΔL [dB] einschließlich Mündungsreflexion.


		Mittelfrequenz Hz						
Größe	63	125	250	500	1K	2K	4K	8K
1207	19	14	5	3	2	1	2	1
1607	16	12	4	1	2	1	2	2
2010	12	8	4	2	3	2	2	2
2510	12	8	5	2	1	1	1	1
3115	11	8	3	2	1	1	2	2
4020	9	6	1	1	1	1	1	1
5020	7	5	0	1	1	1	1	2

Nahbereich

Große Spreizung (Werkseinstellung)

Kleine Spreizung

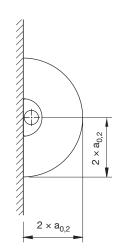
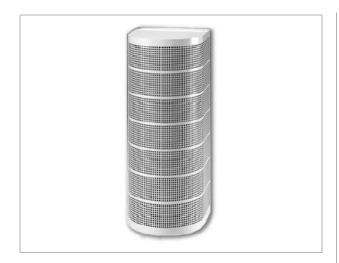
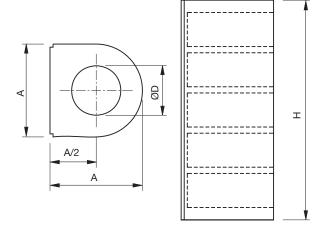



Tabelle 1 Korrektur des Nahbereichs ($a_{0,2}$, $b_{0,2}$)

	Maximal-	Mittel-	
Temperatur- differenz	geschwindig- keit	geschwindig- keit	Korrektur
T_{i} - T_{r}	m/s	m/s	
	0.20	0.10	1.00
	0.25	0.12	0.80
-3K	0.30	0.15	0.70
	0.35	0.17	0.60
	0.40	0.20	0.50
	0.20	0.10	1.20
	0.25	0.12	1.00
-6K	0.30	0.15	0.80
	0.35	0.17	0.70
	0.40	0.20	0.60

Quellluftdurchlass CHA

Beschreibung


Comdif CHA ist ein halbrunder, perforierter Verdrängungsauslass zur Installation an einer Wand oder Säule. Hinter der perforierten Frontplatte verfügt der CHA über einzeln einstellbare Düsen, mit denen die Geometrie des Nahbereichs angepasst werden kann. Der Auslass ist drehbar und verfügt über einen runden Kanalanschluss (MF-Maß), deshalb kann er von oben oder von unten angeschlossen werden. Der CHA eignet sich für die Zufuhr großer Luftmengen bei geringer Temperaturdifferenz.

- Der Auslass eignet sich für die Zufuhr großer Luftmengen.
- Die Geometrie des Nahbereichs kann über einstellbare Düsen angepasst werden.
- Rohrverkleidung, Sockel und Konsolen zur Wandmontage sind als Zubehör lieferbar.

Wartung

Der Auslass ist wartungsfrei - die Gefahr der Verstopfung besteht nicht, da kein Filtervlies eingesetzt wird. Die Frontplatte kann jedoch zur Reinigung der Düsen entfernt werden. Die sichtbaren Teile des Auslasses können mit einem feuchten Tuch abgewischt werden.

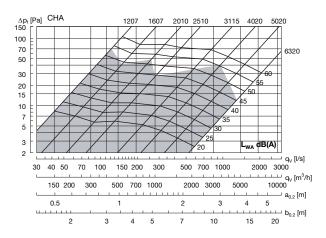
Dimensionen

	Α	ØD	н	Gewicht
Größe	mm	mm	mm	kg
1207	250	125	710	6,50
1607	300	160	710	7,50
2010	330	200	970	13,0
2510	400	250	970	18,0
3115	520	315	1490	35,0
4020	630	400	2010	58,0
5020	730	500	2010	78,0
6320	830	630	2010	106

Zubehör

Mit Rohrverkleidung, Sockel und Konsolen zur Wandmon-tage lieferbar.

Material und Ausführung


Auslass: Verzinkter Stahl
Düsen: Kunststoff, schwarz
Frontplatte: 1 mm verzinkter Stahl
Standardausführung: Pulverbeschichtet

Standardfarbe: RAL 9010

Der Auslass ist in anderen Farben und Abmessungen erhältlich. Weitere Informationen erhalten Sie auf Anfrage.

Technische Daten

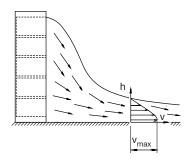
Empfohlener maximaler Volumenstrom

Der Nahbereich wird bei einer Temperaturdifferenz von -3 K bis zu einer maximalen Endgeschwindigkeit von 0,20 m/s angegeben.

Umrechnung auf andere Endgeschwindigkeiten – siehe Tabelle 1, Korrektur des Nahbereichs bei -3 K bzw. -6 K.

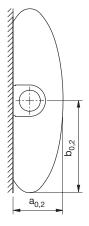
Schallleistungspegel

Schallleistungspegel L_W [dB] = $L_{WA} + K_{ok}$


	Mittelfrequenz Hz								
Größe	63	125	250	500	1K	2K	4K	8K	
1207	11	-4	1	1	-9	-16	-28	-34	
1607	9	-2	2	0	-8	-16	-28	-34	
2010	10	-2	3	0	-7	-16	-28	-39	
2510	11	0	4	-2	-7	-15	-27	-37	
3115	13	1	3	-1	-7	-17	-29	-42	
4020	7	3	2	-1	-5	-14	-19	-14	
5020	7	3	2	0	-6	-16	-19	-17	
6320	7	3	2	0	-6	-16	-29	-17	

Eigendämpfung

Eigendämpfung ΔL [dB] einschließlich Mündungsreflexion.


	Mittelfrequenz Hz							
Größe	63	125	250	500	1K	2K	4K	8K
1207	19	14	5	3	2	1	2	1
1607	16	12	4	1	2	1	2	2
2010	12	8	4	2	3	2	2	2
2510	12	8	5	2	1	1	1	1
3115	11	8	3	2	1	1	2	2
4020	9	6	1	1	1	1	1	1
5020	7	5	0	1	1	1	1	2
6320	5	3	1	1	0	0	0	0

Nahbereich

Große Spreizung (Werkseinstellung)

Kleine Spreizung

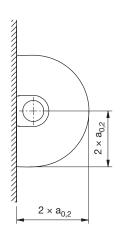
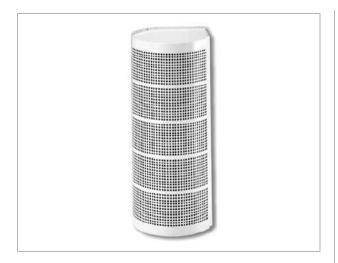



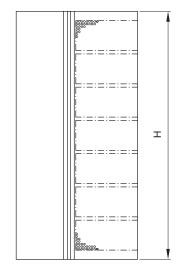
Tabelle 1 Korrektur des Nahbereichs (a_{0,2}, b_{0,2})

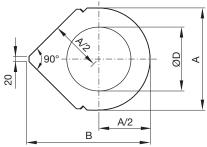
Temperatur- differenz	Maximal- geschwindig- keit	Mittel- geschwindig- keit	Korrektur
T _i -T _r	m/s	m/s	
	0.20	0.10	1.00
	0.25	0.12	0.80
-3K	0.30	0.15	0.70
	0.35	0.17	0.60
	0.40	0.20	0.50
	0.20	0.10	1.20
	0.25	0.12	1.00
-6K	0.30	0.15	0.80
	0.35	0.17	0.70
	0.40	0.20	0.60

Quellluftdurchlass CQA

Beschreibung

Comdif CQA ist ein halbrunder, perforierter Verdrängungsauslass zur Eckinstallation. Hinter der perforierten Frontplatte verfügt der CQA über einzeln einstellbare Düsen, mit denen die Geometrie des Nahbereichs angepasst werden kann. Der Auslass ist drehbar und verfügt über einen runden Kanalanschluss (MF-Maß), deshalb kann er von oben oder von unten angeschlossen werden. Der CQA eignet sich für die Zufuhr großer Luftmengen bei geringer Temperaturdifferenz.


- Der Auslass eignet sich für die Zufuhr großer Luftmengen.
- Die Geometrie des Nahbereichs kann über einstellbare Düsen angepasst werden.
- Rohrverkleidung, Sockel und Konsolen zur Wandmontage sind als Zubehör lieferbar.


Wartung

Der Auslass ist wartungsfrei - die Gefahr der Verstopfung besteht nicht, da kein Filtervlies eingesetzt wird.

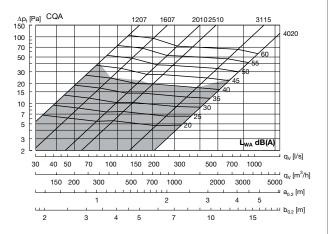
Die Frontplatte kann jedoch zur Reinigung der Düsen entfernt werden. Die sichtbaren Teile des Auslasses können mit einem feuchten Tuch abgewischt werden.

Dimensionen

	Α	В	ØD	Н	Gewicht
Größe	mm	mm	mm	mm	kg
1207	250	302	125	710	8,00
1607	300	362	160	710	9,00
2010	330	398	200	970	14,0
2510	400	483	250	970	20,0
3115	520	628	315	1490	40,0
4020	630	760	400	2010	64,0

Zubehör

Mit Rohrverkleidung, Sockel und Konsolen zur Wandmontage lieferbar.


Material und Ausführung

Auslass: Verzinkter Stahl
Düsen: Kunststoff, schwarz
Frontplatte: 1 mm verzinkter Stahl
Standardausführung: Pulverbeschichtet
Standardfarbe: RAL 9010 weiß

Der Auslass ist in anderen Farben und Abmessungen erhältlich. Weitere Informationen erhalten Sie auf Anfrage.

Technische Daten

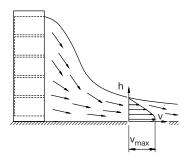
Empfohlener maximaler Volumenstrom.

Der Nahbereich wird bei einer Temperaturdifferenz von -3 K bis zu einem maximalen Endgeschwindigkeit von 0,20 m/s angegeben.

Umrechnung auf andere Endgeschwindigkeiten – siehe Tabelle 1, Korrektur des Nahbereichs bei -3 K bzw. -6 K.

Schallleistungspegel

Schallleistungspegel L_W [dB] = $L_{WA} + K_{ok}$


		Mittelfrequenz Hz								
Größe	63	125	250	500	1K	2K	4K	8K		
1207	8	-3	3	0	-7	-15	-27	-35		
1607	11	-1	5	-2	-8	-16	-28	-34		
2010	11	0	5	-2	-7	-16	-28	-40		
2510	11	2	5	-2	-7	-15	-29	-39		
3115	11	3	5	-2	-8	-17	-29	-38		
4020	12	4	2	0	-8	-16	-30	-41		

Eigendämpfung

Eigendämpfung ΔL [dB] einschließlich Mündungsreflexion.

		Mittelfrequenz Hz								
Größe	63	125	250	500	1K	2K	4K	8K		
1207	18	13	5	3	3	2	2	2		
1607	15	11	3	1	2	2	2	2		
2010	11	7	3	8	5	5	7	7		
2510	10	6	5	7	5	4	4	5		
3115	9	6	5	4	4	5	5	7		
4020	8	5	2	3	2	3	3	3		

Nahbereich

Große Spreizung (Werkseinstellung)

Kleine Spreizung

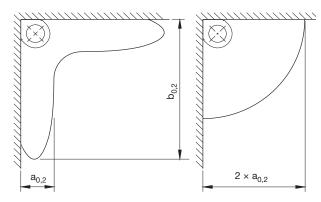
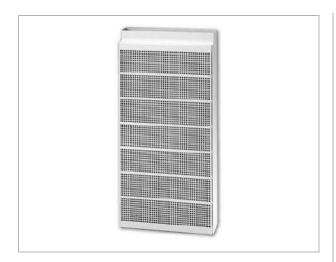
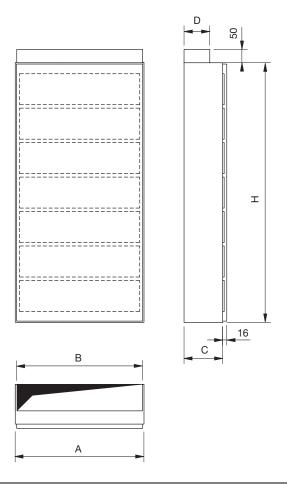



Tabelle 1 Korrektur des Nahbereichs (a_{0,2}, b_{0,2})

	Maximal	Mittel	
Temperatur- differenz	Geschwindig- keit	Geschwindig- keit	Korrektur
T_i - T_r	m/s	m/s	
	0.20	0.10	1.00
-3K	0.25	0.12	0.80
	0.30	0.15	0.70
	0.35	0.17	0.60
	0.40	0.20	0.50
	0.20	0.10	1.20
	0.25	0.12	1.00
-6K	0.30	0.15	0.80
	0.35	0.17	0.70
	0.40	0.20	0.60

Quellluftdurchlass CRA

Beschreibung


Comdif CRA ist ein rechteckiger, perforierter Verdrängungsauslass zur Installation an einer Wand oder Säule. Der CRA
verfügt über einen rechteckigen Anschluss und damit über
eine reduzierte Tiefe, deshalb eignet er sich ideal für die
Installation in Räumen, in denen eine möglichst unauffällige
Montage erforderlich ist. Hinter der perforierten Frontplatte
verfügt der CRA über einzeln einstellbare Düsen, mit denen
die Geometrie des Nahbereichs angepasst werden kann.
Der Auslass ist drehbar und verfügt über einen rechteckigen
Kanalanschluss, deshalb kann er von oben oder von unten
angeschlossen werden. Ein Verbindungskanal mit rundem
Anschluss ist als Zubehör erhältlich (CRAZ-1). Der
Auslass eignet sich für die Zufuhr großer Luftmengen bei
geringer Temperaturdifferenz.

- Der Auslass eignet sich für die Zufuhr großer Luftmengen.
- Die Geometrie des Nahbereichs kann über einstellbare Düsen angepasst werden.
- Verbindungskanal, Sockel und Konsolen zur Wandmontage sind als Zubehör lieferbar.

Wartung

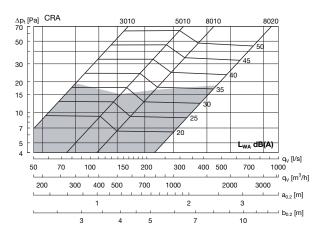
Der Auslass ist wartungsfrei - die Gefahr der Verstopfung besteht nicht, da kein Filtervlies eingesetzt wird. Die Frontplatte kann jedoch zur Reinigung der Düsen entfernt werden. Die sichtbaren Teile des Auslasses können mit einem feuchten Tuch abgewischt werden.

Dimensionen

	Α	В	С	D	Н	Gewicht
Größe	mm	mm	mm	mm	mm	kg
3010	300	278	150	98	980	10,0
5010	500	478	150	98	980	17,0
8010	800	778	150	98	980	27,0
8020	800	778	250	198	2020	32,0

Zubehör

Mit Verbindungskanal und Sockel lieferbar.


Material und Ausführung

Auslass: Verzinkter Stahl
Düsen: Kunststoff, schwarz
Frontplatte: 1,5 mm verzinkter Stahl
Standardausführung: Pulverbeschichtet
Standardfarbe: RAL 9010

Der Auslass ist in anderen Farben und Abmessungen erhältlich. Weitere Informationen erhalten Sie auf Anfrage.

Technische Daten

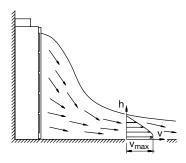
Empfohlener maximaler Volumenstrom

Der Nahbereich wird bei einer Temperaturdifferenz von -3 K bis zu einer maximalen Endgeschwindigkeit von 0,20 m/s angegeben.

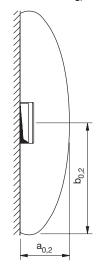
Umrechnung auf andere Endgeschwindigkeiten – siehe Tabelle 1, Korrektur des Nahbereichs bei -3 K bzw. -6 K.

Schallleistungspegel

Schallleistungspegel L_W [dB] = $L_{WA} + K_{ok}$


	Mittelfrequenz Hz							
Größe	63	125	250	500	1K	2K	4K	8K
3010	9	-1	5	-1	-11	-17	-30	-41
5010	7	1	4	0	-11	-19	-32	-42
8010	15	0	4	0	-12	-20	-31	-43
8020	10	4	6	-2	-11	-21	-33	-39

Eigendämpfung

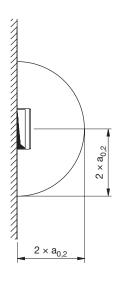

Eigendämpfung ΔL [dB] einschließlich Mündungsreflexion.

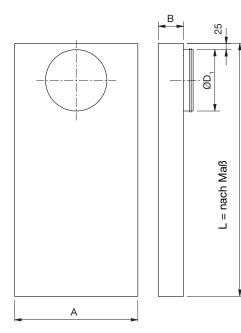
		Mittelfrequenz Hz							
Größe	63	125	250	500	1K	2K	4K	8K	
3010	11	7	6	4	2	2	1	2	
5010	10	6	6	4	2	2	1	2	
8010	10	6	4	3	2	1	1	1	
8020	7	4	3	2	1	1	1	1	

Nahbereich

Große Spreizung (Werkseinstellung)

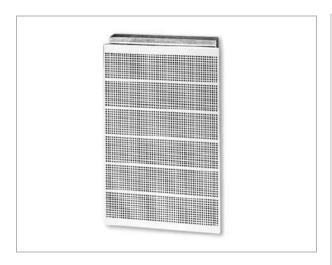
Kleine Spreizung




Tabelle 1 Korrektur des Nahbereichs ($a_{0,2}$, $b_{0,2}$)

Temperatur- differenz	Maximal- geschwindig- keit	Mittel- geschwindig- keit	Korrektur
T _i -T _r	m/s	m/s	
	0.20	0.10	1.00
	0.25	0.12	0.80
-3K	0.30	0.15	0.70
	0.35	0.17	0.60
	0.40	0.20	0.50
	0.20	0.10	1.20
	0.25	0.12	1.00
-6K	0.30	0.15	0.80
	0.35	0.17	0.70
	0.40	0.20	0.60

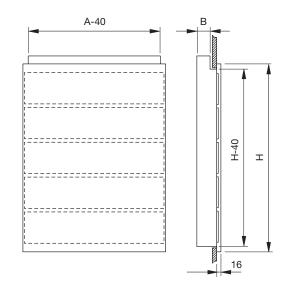
Zubehör


Verbindungskanal CRAZ-1

	Α	В	ØD ₁	Gewicht
Größe	mm	mm	mm	kg/m
3010	280	100	200	5,00
5010	480	100	250	7,00
8010	780	100	315	9,00
8020	780	200	400	11,0

Quellluftdurchlass CVA

Beschreibung


Comdif CVA ist ein rechteckiger, perforierter Verdrängungsauslass zur Installation in Wänden oder ähnlichen Objekten. Der CVA verfügt über einen rechteckigen Anschluss. Hinter der perforierten Frontplatte verfügt der CVA über einzeln einstellbare Düsen, mit denen die Geometrie des Nahbereichs angepasst werden kann. Der Auslass ist drehbar und verfügt über einen rechteckigen Kanalanschluss, deshalb kann er von oben oder von unten angeschlossen werden. (CVAZ-1) ein Wandkanal mit rundem Anschluss ist als Zubehör lieferbar. Der CVA eignet sich für die Zufuhr großer Luft-mengen bei geringer Temperaturdifferenz.

- Der Auslass eignet sich zur Installation in Wänden.
- Die Geometrie des Nahbereichs kann über einstellbare Düsen angepasst werden.
- Ein Wandkanal ist als Zubehör lieferbar.

Wartung

Der Auslass ist wartungsfrei - die Gefahr der Verstopfung besteht nicht, da kein Filtervlies eingesetzt wird. Die Frontplatte kann jedoch zur Reinigung der Düsen entfernt werden. Die sichtbaren Teile des Auslasses können mit einem feuchten Tuch abgewischt werden.

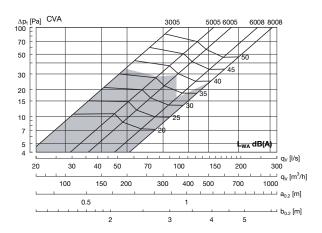
Dimensionen

	Α	В	D	Н	Gewicht
Größe	mm	mm	mm	mm	kg
3005	540	50	75	320	4,40
5005	540	50	75	450	5,80
6005	540	50	75	580	8,70
6008	540	80	105	580	9,00
8008	540	80	105	840	12,0

Aussparung: A - 30 x H - 30

Zubehör

Mit Wandkanal lieferbar.


Material und Ausführung

Auslass: Verzinkter Stahl
Düsen: Kunststoff, schwarz
Frontplatte: 1,5 mm verzinkter Stahl
Standardausführung: Pulverbeschichtet
Standardfarbe: RAL 9010

Der Auslass ist in anderen Farben und Abmessungen erhältlich. Weitere Informationen erhalten Sie auf Anfrage.

Technische Daten

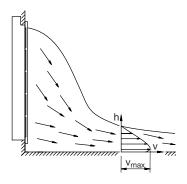
Empfohlener maximaler Volumenstrom

Der Nahbereich wird bei einer Temperaturdifferenz von -3 K bis zu einer maximalen Endgeschwindigkeit von 0,20 m/s angegeben.

Umrechnung auf andere Endgeschwindigkeiten – siehe Tabelle 1, Korrektur des Nahbereichs bei -3 K bzw. -6 K.

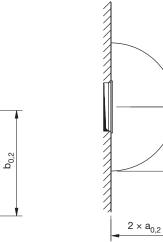
Schallleistungspegel

Schallleistungspegel L_W [dB] = $L_{WA} + K_{ok}$


		Mittelfrequenz Hz							
Größe	63	125	250	500	1K	2K	4K	8K	
3005	7	-2	-2	1	-8	-17	-27	-38	
5005	7	-3	-1	1	-7	-17	-29	-36	
6005	11	-4	-1	1	-7	-17	-29	-37	
6008	12	-4	2	1	-9	-20	-31	-31	
8008	10	-4	2	1	-9	-19	-30	-43	

Eigendämpfung

Eigendämpfung ΔL [dB] einschließlich Mündungsreflexion.


		Mittelfrequenz Hz						
Größe	63	125	250	500	1K	2K	4K	8K
3005	18	13	9	4	1	0	0	1
5005	15	11	8	2	2	1	0	0
6005	15	10	4	2	0	0	0	1
6008	12	8	3	2	0	0	0	0
8008	12	8	3	1	0	0	0	0

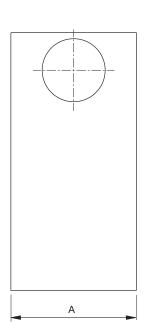
Nahbereich

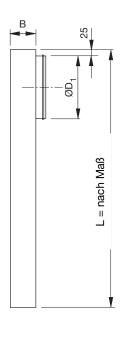
Große Spreizung (Werkseinstellung)

 $a_{0,2}$

 $2 \times a_{0,2}$

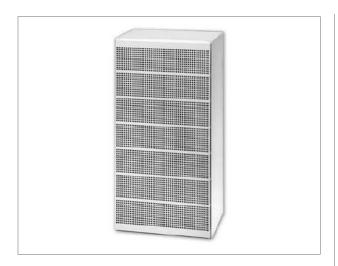
reizung Kleine Spreizung stellung)




Temperatur- differenz T _i -T _r	Maximal- geschwindig- keit m/s	Mittel- geschwindig- keit m/s	Korrektur
1 j-1 r	0.20	0.10	1.00
	0.25	0.12	0.80
-3K	0.30	0.15	0.70
	0.35	0.17	0.60
	0.40	0.20	0.50
	0.20	0.10	1.20
	0.25	0.12	1.00
-6K	0.30	0.15	0.80
	0.35	0.17	0.70
	0.40	0.20	0.60

Zubehör

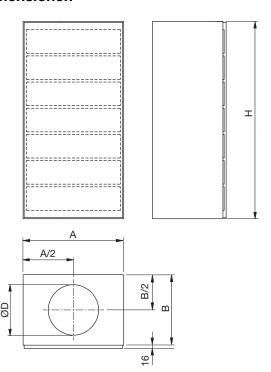
Wandkanal CVAZ-1



	Α	В	ØD ₁	Gewicht
Größe	mm	mm	mm	kg/m
3005	502	52	125	6,00
5005	502	52	160	6,00
6005	502	52	200	6,00
6008	502	82	250	6.50
8008	502	82	315	6.50

Quellluftdurchlass CEA

Beschreibung


Comdif CEA ist ein rechteckiger, perforierter Verdrängungsauslass zur Installation an einer Wand oder Säule. Hinter der perforierten Frontplatte verfügt CEA über einzeln einstellbare Düsen, mit denen die Geometrie des Nahbereichs angepasst werden kann. Der Auslass ist drehbar und verfügt über einen runden Kanalanschluss (MF-Maß), deshalb kann er von oben oder von unten angeschlossen werden. Der CEA eignet sich für die Zufuhr großer Luftmengen bei geringer Temperaturdifferenz.

- Der Auslass eignet sich für die Zufuhr großer Luftmengen
- Die Geometrie des Nahbereichs kann über einstellbare Düsen angepasst werden.
- Sockel und Konsolen zur Wandmontage sind als Zubehör lieferbar.

Wartung

Der Auslass ist wartungsfrei - die Gefahr der Verstopfung besteht nicht, da kein Filtervlies eingesetzt wird. Die Frontplatte kann jedoch zur Reinigung der Düsen entfernt werden. Die sichtbaren Teile des Auslasses können mit einem feuchten Tuch abgewischt werden.

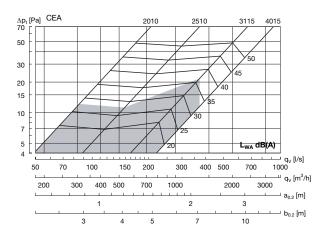
Dimensionen

	Α	В	ØD	Н	Gewicht
Größe	mm	mm	mm	mm	kg
2010	300	300	200	980	12,0
2510	500	350	250	980	24,0
3115	800	500	315	1500	80,0
4015	800	600	400	1500	96,0

Zubehör

Mit Sockel lieferbar.

Material und Ausführung


Auslass: Verzinkter Stahl
Düsen: Kunststoff, schwarz
Frontplatte: 1,5 mm verzinkter Stahl
Standardausführung: Pulverbeschichtet

Standardfarbe: RAL 9010

Der Auslass ist in anderen Farben und Abmessungen erhältlich. Weitere Informationen erhalten Sie auf Anfrage.

Technische Daten

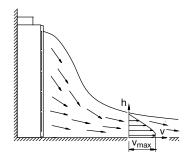
Empfohlener maximaler Volumenstrom.

Der Nahbereich wird bei einer Temperaturdifferenz von -3 K bis zu einer maximalen Endgeschwindigkeit von 0,20 m/s angegeben.

Umrechnung auf andere Endgeschwindigkeiten – siehe Tabelle 1, Korrektur des Nahbereichs bei -3 K bzw. -6 K.

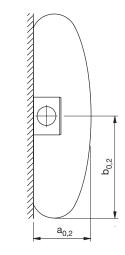
Schallleistungspegel

Schallleistungspegel L_W [dB] = $L_{WA} + K_{ok}$


	Mittelfrequenz Hz							
Größe	63	125	250	500	1K	2K	4K	8K
2010	11	4	4	-1	-8	-14	-25	-37
2510	8	4	2	0	-6	-16	-27	-40
3115	14	6	3	-1	-8	-17	-29	-25
4015	11	3	2	1	-10	-18	-30	-37

Eigendämpfung

Eigendämpfung ΔL [dB] einschließlich Mündungsreflexion.


		Mittelfrequenz Hz						
Größ	e 63	125	250	500) 1K	2K	4K	8K
2010	10	6	1	4	5	3	4	4
2510	10	6	6	4	2	2	4	3
3115	5 9	6	5	3	3	4	4	5
4015	5 8	5	3	3	2	3	4	4

Nahbereich

Große Spreizung (Werkseinstellung)

Kleine Spreizung

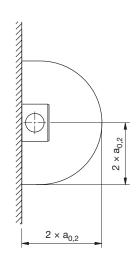
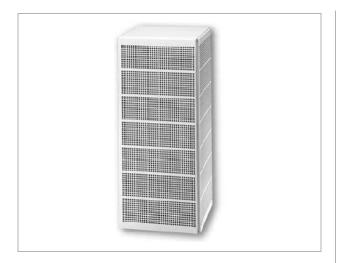



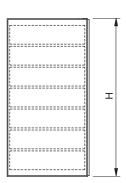
Tabelle 1 Korrektur des Nahbereichs (a_{0,2}, b_{0,2})

Temperatur- differenz T _i -T _r	Maximal- geschwindig- keit m/s	Mittel- geschwindig- keit m/s	Korrektur
	0.20	0.10	1.00
	0.25	0.12	0.80
-3K	0.30	0.15	0.70
	0.35	0.17	0.60
	0.40	0.20	0.50
	0.20	0.10	1.20
	0.25	0.12	1.00
-6K	0.30	0.15	0.80
	0.35	0.17	0.70
	0.40	0.20	0.60

Quellluftdurchlass CKA

Beschreibung

Comdif CKA ist ein quadratischer, perforierter Verdrängungsauslass zur Installation an einer Wand oder Säule. Hinter der perforierten Frontplatte verfügt CKA über einzeln einstellbare Düsen, mit denen die Geometrie des Nahbereichs angepasst werden kann. Der Auslass ist drehbar und verfügt über einen runden Kanalanschluss (MF-Maß), deshalb kann er von oben oder von unten angeschlossen werden. Der CKA eignet sich für die Zufuhr großer Luftmengen bei geringer Temperaturdifferenz.


- Der Auslass eignet sich für die Zufuhr großer Luftmengen.
- Die Geometrie des Nahbereichs kann über einstellbare Düsen angepasst werden.
- Sockel und Konsolen zur Wandmontage sind als Zubehör lieferbar.

Wartung

Der Auslass ist wartungsfrei - die Gefahr der Verstopfung besteht nicht, da kein Filtervlies eingesetzt wird. Die Frontplatte kann jedoch zur Reinigung der Düsen entfernt werden. Die sichtbaren Teile des Auslasses können mit einem feuchten Tuch abgewischt werden.

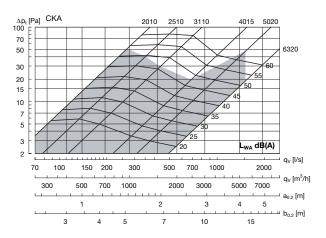
Dimensionen

	Α	ØD	Н	Gewicht
Größe	mm	mm	mm	kg
2010	300	200	980	11,0
2510	400	250	980	20,0
3110	500	315	980	30,0
4015	500	400	1500	45,0
5020	800	500	2020	150
6320	800	630	2020	150

Zubehör

Mit Sockel lieferbar.

Material und Ausführung


Auslass: Verzinkter Stahl
Düsen: Kunststoff, schwarz
Frontplatte: 1,5 mm verzinkter Stahl
Standardausführung: Pulverbeschichtet

Standardfarbe: RAL 9010

Der Auslass ist in anderen Farben und Abmessungen erhältlich. Weitere Informationen erhalten Sie auf Anfrage.

Technische Daten

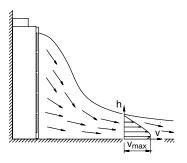
Empfohlener maximaler Volumenstrom.

Der Nahbereich wird bei einer Temperaturdifferenz von -3 K bis zu einer maximalen Endgeschwindigkeit von 0,20 m/s angegeben.

Umrechnung auf andere Endgeschwindigkeiten – siehe Tabelle 1, Korrektur des Nahbereichs bei -3 K bzw. -6 K.

Schallleistungspegel

Schallleistungspegel L_W [dB] = $L_{WA} + K_{ok}$


		Mittelfrequenz Hz						
Größe	63	125	250	500	1K	2K	4K	8K
2010	10	0	4	0	-8	-18	-29	-43
2510	11	1	4	-1	-8	-19	-30	-42
3110	14	3	4	-1	-10	-18	-30	-32
4015	10	1	2	0	-8	-17	-27	-42
5020	7	3	2	0	-6	-16	-19	-17
6320	7	3	2	0	-6	-16	-19	-17

Eigendämpfung

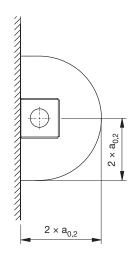
Eigendämpfung ΔL [dB] einschließlich Mündungsreflexion.

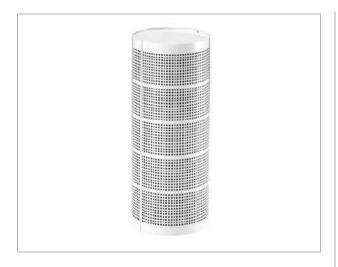
		Mittelfrequenz Hz						
Größe	63	125	250	500	1K	2K	4K	8K
2010	12	8	4	2	1	1	1	1
2510	10	6	6	4	2	2	4	3
3110	10	7	3	1	2	1	2	1
4015	9	6	1	1	1	1	1	1
5020	6	4	1	1	1	1	1	1
6320	5	3	1	0	0	0	0	0

Nahbereich

Große Spreizung (Werkseinstellung)

Kleine Spreizung



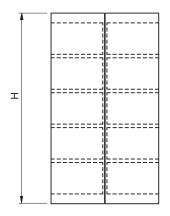

Tabelle 1 Korrektur des Nahbereichs ($a_{0,2}$, $b_{0,2}$)

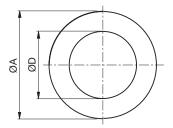
	Maximal-	Mittel-	
Temperatur- differenz	geschwindig- keit	geschwindig- keit	Korrektur
T_{i} - T_{r}	m/s	m/s	
	0.20	0.10	1.00
	0.25	0.12	0.80
-3K	0.30	0.15	0.70
	0.35	0.17	0.60
	0.40	0.20	0.50
	0.20	0.10	1.20
	0.25	0.12	1.00
-6K	0.30	0.15	0.80
	0.35	0.17	0.70
	0.40	0.20	0.60

LUFTAUSLÄSSE

Quellluftdurchlass CCA

Beschreibung


Comdif CCA ist ein runder, perforierter Verdrängungsauslass zur freistehenden Installation. Hinter der perforierten Frontplatte verfügt CCA über einzeln einstellbare Düsen, mit denen die Geometrie des Nahbereichs angepasst werden kann. Der Auslass ist drehbar und verfügt über einen runden Kanalanschluss (MF-Maß), deshalb kann er von oben oder von unten angeschlossen werden. Der CCA eignet sich für die Zufuhr großer Luftmengen bei geringer Temperaturdif-


- Der Auslass eignet sich für die Zufuhr großer Luftmen-
- Die Geometrie des Nahbereichs kann über einstellbare Düsen angepasst werden.
- Ein Sockel ist als Zubehör lieferbar.

Wartung

Der Auslass ist wartungsfrei - die Gefahr der Verstopfung besteht nicht, da kein Filtervlies eingesetzt wird. Die Frontplatte kann jedoch zur Reinigung der Düsen entfernt werden. Die sichtbaren Teile des Auslasses können mit einem feuchten Tuch abgewischt werden.

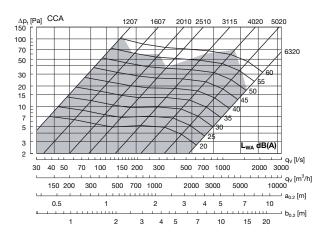
Dimensionen

	ØA	ØD	Н	Gewicht
Größe	mm	mm	mm	kg
1207	250	125	710	5,00
1607	300	160	710	7,50
2010	360	200	970	13,0
2510	400	250	970	18,0
3115	520	315	1490	35,0
4020	630	400	2010	58,0
5020	730	500	2010	78,0
6320	830	630	2010	106

Zubehör

Mit Sockel lieferbar.

Material und Ausführung


Auslass: Verzinkter Stahl Düsen: Kunststoff, schwarz Frontplatte: 1 mm verzinkter Stahl Standardausführung: Pulverbeschichtet

Standardfarbe: **RAL 9010**

Der Auslass ist in anderen Farben und Abmessungen erhältlich. Weitere Informationen erhalten Sie auf Anfrage.

Technische Daten

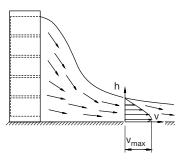
Empfohlener maximaler Volumenstrom

Der Nahbereich wird bei einer Temperaturdifferenz von -3 K bis zu einer maximalen Endgeschwindigkeit von 0,20 m/s angegeben.

Umrechnung auf andere Endgeschwindigkeiten – siehe Tabelle 1, Korrektur des Nahbereichs bei -3 K bzw. -6 K.

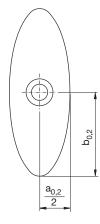
Schallleistungspegel

Schallleistungspegel L_W [dB] = $L_{WA} + K_{ok}$


	Mittelfrequenz Hz									
Größe	63	125	250	500	1K	2K	4K	8K		
1207	8	-1	1	1	-9	-17	-28	-40		
1607	10	-1	1	1	-8	-17	-29	-33		
2010	10	-1	3	0	-9	-17	-27	-40		
2510	7	-1	3	0	-7	-18	-28	-41		
3115	13	2	3	-1	-8	-17	-29	-27		
4020	13	2	3	-1	-7	-16	-28	-43		
5020	7	3	2	0	-6	-16	-19	-17		
6320	7	3	2	0	-8	-16	-20	-17		

Eigendämpfung

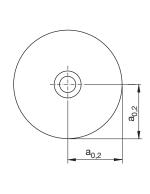
Eigendämpfung ΔL [dB] einschließlich Mündungsreflexion.

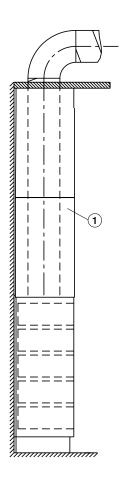

	Mittelfrequenz Hz									
Größe	63	125	250	500	1K	2K	4K	8K		
1207	19	14	5	3	2	1	2	1		
1607	16	12	4	1	2	1	2	2		
2010	12	8	4	2	3	2	2	2		
2510	12	8	5	2	1	1	1	1		
3115	11	8	3	2	1	1	2	2		
4020	9	6	1	1	1	1	1	1		
5020	6	4	1	1	1	1	1	1		
6320	5	3	1	1	0	0	0	1		

Nahbereich

Ovale Spreizung

Kreisförmige Spreizung (Werkseinstellung)

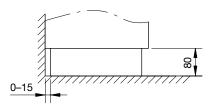



Tabelle 1 Korrektur des Nahbereichs ($a_{0,2}$, $b_{0,2}$)

Temperatur- differenz	Maximal- geschwindig- keit	Mittel- geschwindig- keit	Korrektur
T _i -T _r	m/s	m/s	
	0.20	0.10	1.00
	0.25	0.12	0.80
-3K	0.30	0.15	0.70
	0.35	0.17	0.60
	0.40	0.20	0.50
	0.20	0.10	1.20
	0.25	0.12	1.00
-6K	0.30	0.15	0.80
	0.35	0.17	0.70
	0.40	0.20	0.60

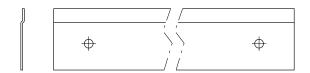
Zubehör Comdif

Rohrverkleidung Typ 0

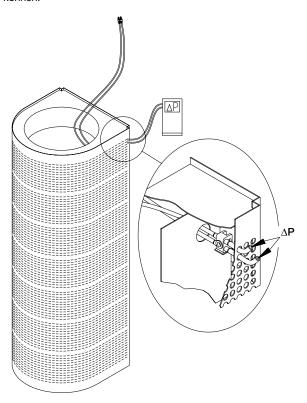

Rohrverkleidungen sind für Verdrängungsauslässe des Typs CBA, CHA und CQA der Größen 1207 bis 3115 erhältlich.

Typ CHAZ-0, CQAZ-0 & CBAZ-0

Größe	A mm	Max. Raum- höhe mm	Min. Raum- höhe mm	Gewicht kg/m
1207	250	3300	2400	6,0
1607	300	3300	2400	7,5
2010	330	3300	2400	9,5
2510	400	3300	2400	12,0
3115	520	3200	2400	15,0


Sockel CHAZ-2

Der Sockel CHAZ-2 ist in allen Größen für frei stehende Auslässe erhältlich.



Konsole CHAZ-3

Die Konsole CHAZ-3 ist in allen Größen für frei stehende Auslässe erhältlich.

Comdif-Auslässe werden mit Messstutzen ausgestattet, die über Schläuche mit einer Messdrossel (FMI, FMDU, DIRU, o.ä.) innerhalb des Lüftungssystems verbunden werden können. Die Stutzen sind hinter den Öffnungen in der Frontplatte angebracht, so dass die Messungen ohne Entfernen der Frontplatte erfolgen können.

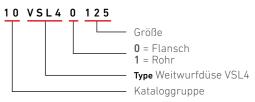
Weitwurfdüsen VSL-4

Beschreibung

VSL-4 ist eine einstellbare Weitwurfdüse und eignet sich für die Lüftung großer Räume, in denen eine hohe Wurfweite erforderlich ist. Die Düse kann bezogen auf ihre Mittelliniefrei um 30 Grad in alle Richtungen gedreht werden. Die Düse kann zu Kühl- und Heizzwecken verwendet werden. Die VSL-4 kann direkt in einen Kanal oder eine Wand (VSL-4-0), bzw. in ein Rohr oder ein Verbindungsstück (VSL-4-0) installiert werden. Die VSL-4-0 ist mit Schraubenbohrungen im Flansch ausgestattet.

- · Flexible, einstellbare Düse
- Hohe Wurfweite
- Einfache Installation

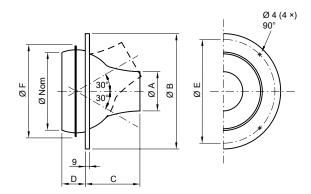
Wartung


Die Düse kann bei Bedarf mit einem feuchten Tuch gereinigt werden.

Material und Ausführung

Material: Aluminium
Standardausführung: Pulverbeschichtet
Standardfarbe: RAL 9010

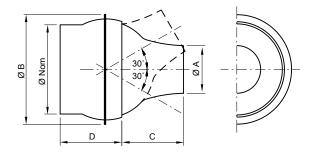
Die Düse ist in anderen Farben erhältlich. Weitere Informationen erhalten Sie auf Anfrage.


ARTIKELSCHLÜSSEL

Abmessungen

VSL-4-0

Mit Flansch zur Wand- oder Kanalmontage.



ØF = min. Ausschnittsmass

							Gewic
Ø nom	ØA	ØB	С	D	ØE	ØF	ht
Größe	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	kg
160	85	248	120	51	225	200	0.60
200	110	298	150	66	270	245	0.90
250	140	363	190	81	320	295	1.40
315	175	448	255	90	390	360	2.40

VSL-4-1

Installation in Rohr.

ØNom mit Nippel

Ø nom	ØA	ØB	С	D	Gewicht
Größe	[mm]	[mm]	[mm]	[mm]	kg
160	85	196	110	110	0.50
200	110	238	140	125	0.90
250	140	288	180	140	1.40
315	175	355	245	165	2.40

Freier Querschnitt für VSL-4 Düse - siehe Seite: Berechnungen Düsen.

Technische Daten

Leistung

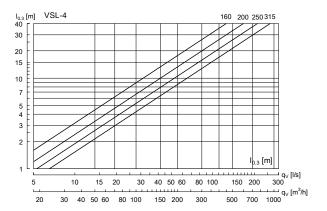
Die Diagramme zeigen den Gesamtdruckverlust Δp_t [Pa], Wurfweite I $_{0,3}$ [m] sowie Schallleistungspegel L $_{WA}$ [dB(A)] als Funktion des Volumenstromes q_v [l/s, m^3/h].

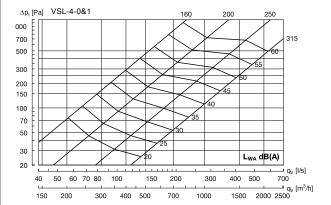
Wurfweite l 0.3

Die Wurfweite $I_{0,3}$ ist aus den Diagrammen für isotherme Zuluft bei einer Endgeschwindigkeit von 0,3 m/s ersichtlich. Bei nicht isothermen Verhältnissen siehe Kapitel Grundlagen

Schallleistungspegel

Der Schallleistungspegel der Düsen muss logarithmisch zum Schallleistungspegel des Strömungsgeräusches im Rohr/Kanal addiert werden. Siehe Berechnungsbeispiel, Seiten Düsenberechnungen.

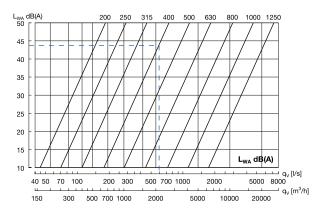

Frequenzabhängiger Schallleistungspegel

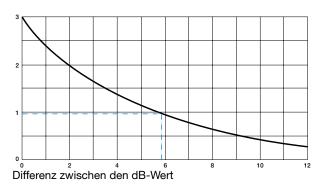

Der Schallleistungspegel im Frequenzbereich wird durch L_{wok} = L_{WA} + K_{ok} definiert. Die Werte für K_{ok} sind aus der folgenden Tabelle ersichtlich.

Tabelle

	Mittelfrequenz Hz										
Größe	63	125	250	500	1K	2K	4K	8K			
160	10	-1	-5	-5	-5	-8	-9	-10			
200	11	1	1	-4	-4	-10	-16	-23			
250	17	0	0	-4	-4	-13	-21	-29			
315	16	1	-1	-2	-4	-13	-21	-32			

Zuluft




Entwickelter Schallleistungspegel

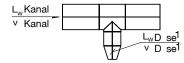

Zur Berechnung des von den D sen entwickelten Schallleistungspegels m ssen der Schallleistungspegel der D sen (L_W D sen) und der Schallleistungspegel des Str mungsger usches im Rohr (L_{WA} Rohr) logarithmisch addiert werden.

Diagramm 1: Schallleistungspegel L_{WA} Rohr.

Diagram 2: Addition der Schallpegel von D se und Rohr: Differenz, die zum h chsten dB-Wert addiert wird.

Berechnungsbeispiel:

LAD-200 q = 100 l/s $\Delta P_t D \text{ se}$ 90 Pa

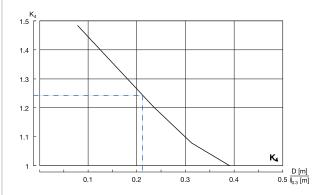
Kanalgr Be:

Damit die Luft ohne Verwendung einer Drossel gleichm ßig ber die D sen verteilt wird, sollte der Druckverlust in der D se dreimal h her als der dynamische Druck im L ftungssystem sein.

Ausgew hite Kanalabmessung ± 400 Anzahl der D sen an der Verbindung 6

Luftmenge im D senrohr $6 \times 100 = 600 \text{ l/s}$

L_{WA} D senrohr (siehe Diagramm 1) 43 dB(A) L_{WA} D se (siehe Produktdiagramm) 37 dB(A) Differenz zwischen den dB-Werten 6 dB(A)


Der Wert muss zum h chsten dB-Wert (dB) addiert werden.

(Diagramm 2) 1 dB(A)

Entwickelter Schallleistungspegel: 43 +1 = 44 dB(A)

Erh hung der Wurfweite f r zwei nebeneinander angebrachte D sen:

Wenn mehrere D sen nebeneinander angebracht werden, wird der Luftstrahl verst rkt und die Wurfweite erh ht. Verwenden Sie zur entsprechenden Berechnung das folgende Diagramm, in dem der Abstand zwischen den D sen als D bezeichnet wird. Der Berechnungsfaktor K_4 muss mit der Wurfweite I_{03} multipliziert werden. Die Wurfweite wird durch zus tzliche D sen nicht weiter erh ht.

Berechnungsbeispiel:

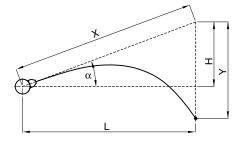
LAD-125. Distanz D = 1.5 Meter.

Luftvolumen: q = 15 l/s

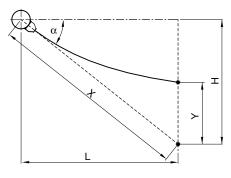
Diagramm unter ausgew hlte D se werfen

Angegebener Wurf: $I_{0.3} = 7 \text{ m}$ D [m] / $I_{0.3}$ [m] 1.5 / 7 = 0.21

K₄ Der Berechnungsfaktor


Im Diagramm angegeben $K_4 = 1.25$

resultierender Wurf


 $K_4 \times I_{0.3} = 1.25 \times 7 \text{ m} = 8.75 \text{ m}$

Zufuhr von Kühlluft

Zufuhr von Warmluft

$$X = \frac{L}{\cos \alpha} = \frac{H}{\sin \alpha}$$

 $H = L \times tan \alpha$

Strahlgeschwindigkeit im punkt $x(V_x)$:

$$v_x = K_1 \times \frac{q}{X}$$

Ablenkung Y:

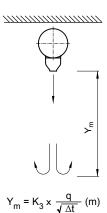
$$Y = K_2 \times \frac{X^3}{\Omega^2} \times \Delta t$$

Berechnungsbeispiel: Kühlluft

 $\begin{array}{ll} \text{LAD-200:} & q = 400 \text{ m}^3 \text{/h} \\ & \Delta t = 6 \text{K} \quad \alpha = 30^\circ \\ \text{Endgeschwindigkeit} & v_x = 0,3 \text{ m/s} \end{array}$

$$\begin{split} v_{_{X}} &= K_{_{1}} \times \ \frac{q}{X} \\ X &= K_{_{1}} \times \frac{q}{v_{_{X}}} = 0,020 \times \frac{400}{0,3} = 27 \text{ m} \\ Y &= K_{_{2}} \times \frac{X^{3}}{q^{2}} \times \Delta t = 24 \times \frac{27^{3}}{400^{2}} \times 6 = 17,7 \text{ m} \\ H &= X \times \sin \alpha = 27 \times 0,5 = 13,5 \text{ m} \\ L &= X \times \cos \alpha = 27 \times 0,87 = 23,4 \text{ m} \end{split}$$

Berechnungsbeispiel:


$$\begin{array}{l} \text{LAD-200:} \qquad \qquad q = 400 \text{ m}^3/\text{h} \\ \qquad \Delta t = 6\text{K} \qquad \alpha = 60^\circ \\ \text{Endgeschwindigkeit} \qquad v_x = 0,3 \text{ m/s} \\ \\ \text{X} = \text{K}_1 \times \frac{q}{v_x} = 0,020 \times \frac{400}{0,3} = 27 \text{ m} \\ \\ \text{Y} = \text{K}_2 \times \frac{\text{X}^3}{\text{q}^2} \times \Delta t = 24 \times \frac{27^3}{400^2} \times 6 = 17,7 \text{ m} \end{array}$$

$$q^2$$
 400°
 $H = X \times \sin \alpha = 27 \times 0.87 = 23.4 \text{ m}$
 $L = X \times \cos \alpha = 27 \times 0.5 = 13.5 \text{ m}$

Berechnungsfaktoren:

	Freier						
	Quer-						
	schnitt	K	1	K	2	K ₃	
Größe	A m ²	m³/h	l/s	m ³ /h	l/s	m ³ /h	l/s
LAD							
125	0.0029	0.037	0.133	3.9	0.30	0.24	0.86
160	0.0071	0.023	0.083	15.6	1.20	0.122	0.44
200	0.0095	0.020	0.072	24.0	1.85	0.097	0.35
250	0.0165	0.0153	0.055	54.4	4.2	0.064	0.230
315	0.0254	0.0122	0.044	104	8.0	0.046	0.166
400	0.0398	0.0097	0.035	206	15.9	0.033	0.119
DAD							
160	0.0056	0.026	0.094	10.7	0.83	0.145	0.52
200	0.0095	0.020	0.072	24.0	1.85	0.097	0.35
250	0.0154	0.0157	0.057	49.0	3.78	0.068	0.24
315	0.0240	0.0127	0.046	96.0	7.41	0.048	0.17
GD							
	0.0027	0.038	0.137	3.5	0.27	0.26	0.92
GTI-1							
200	0.0200	0.0090	0.032	114	8.8	0.048	0.173
250	0.0310	0.0073	0.026	219	16.9	0.034	0.122
315	0.0490	0.0058	0.021	435	34	0.024	0.086
400	0.0780	0.0046	0.017	875	68	0.017	0.062

Vertikale Luftzufuhr bei Warmluft

Berechnungsbeispiel:

LAD-160
$$q = 200 \text{ m}^3/\text{h}$$

$$\Delta t = 10 \text{ K}$$

Der Abstand zum Wendepunkt des Luftstrahls:

$$Y_m = K_3 \times \frac{q}{\sqrt{\Delta t}}$$
 (m)
 $Y_m = 0.122 \times \frac{200}{\sqrt{10}}$ (m)
 $Y_m = 7.7$ m

Weitwurfdüse VS-5

ANWENDUNG

Die Weitwurfdüsen VS-5 komme für die Versorgung von Räumen mit Kalt- oder Warmluft überall dort zur Anwendung, wo große Reichweiten und niedrige Schallleistungen gefordert werden. Durch einzelne Düsen, die zu Blöcken verbunden werden, nimmt die Reichweite verhältnismäßig zu. Der Einbau der Weitwurfdüsen kann auf verschiedene Arten erfolgen.

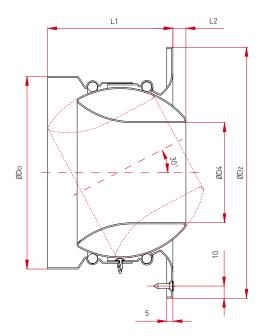
BESCHREIBUNG

Die Weitwurfdüsen VS-5 sind verstellbar. Der Luftstrom kann wie folgt verstellt werden:

- manuell in alle Richtungen um $\pm 30^{\circ}$ und
- mit einem Elektromotor oder Thermostaten in horizontaler oder vertikaler Richtung um ±30°

Die Düseneinstellung ist von der Zulufttemperatur abhängig. Die Düse ist im Gehäuse integriert und ragt auch bei der größten Gehäusegröße 400 um nicht mehr als 45 mm in den Raum hinein (siehe Abmessung L2, bei einem Winkel von 0°).

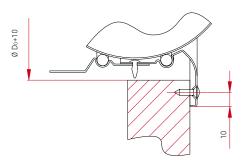
Die Weitwurfdüsen VS-5 werden aus eloxiertem Aluminiumblech hergestellt. Auf Kundenwunsch können die Düsen gemäß der RAL-Farbkarte mit Pulverfarbe verschieden gefärbt werden.



М

GRÖSSEN UND ABMESSUNGEN

L2* ... gilt für einen Einstellwinkel von 0°

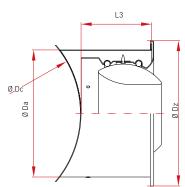

Größe	ØD	ØDz	ØD4	L1	L2	A _{ef} (m ²)	Gewicht (kg)
100	98	146	40	87	-5	0,0013	0,20
125	123	171	64	91	-1	0,0032	0,27
160	158	206	82	98	11	0,0053	0,3
200	198	252	108	108	19	0,0092	0,55
250	248	312	136	121	29	0,0145	0,77
315	313	377	174	145	35	0,0238	1,12
400	398	472	230	171	45	0,0415	1,64

EINBAUARTEN

1. Selbständige Düse (V)

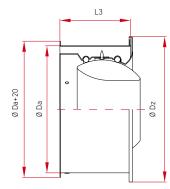
Düsen ohne Ansätze werden auf der Frontseite durch drei Schrauben befestigt. Die Abmessung der Aussparung für den Einbau beträgt ØDo + 10 mm.

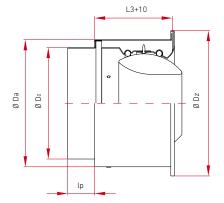
2. Einbau mit Ansätzen (D, K, E)


Sichtbarer Düseneinbau mit einem Ansatz. Bei der Lieferung ist die Düse bereits im Ansatz eingebaut.

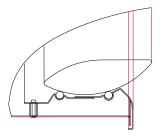
Der vom Monteur durchzuführende Einbau in einen runden oder rechteckigen Kanal erfolgt durch Nieten oder selbstschneidende Schrauben.

Der Ansatz kann auf Kundenwunsch gemäß der RAL-Farbkarte mit Pulverfarbe verschieden gefärbt werden. Bei der Bestellung ist der Rohrdurchmesser ØDc anzugeben.


a) auf einem runden Kanal (D)


b) auf einem rechteckigen Kanal (K)

c) auf einem Rohranschluss (E)



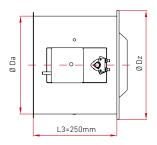
3. Düseneinbau auf einen Ansatz

Die Düse ist mit dem Ansatz über die Seiten verbunden, so dass sich auf der Frontseite keine Schrauben befinden.

Größe	ØD0	ØDz	ØDa	ØDa+20	L3	ØDc min	lp
100	98	146	118	138	90	125	63
125	123	171	143	163	95	150	63
160	158	206	178	198	100	180	63
200	198	252	224	244	110	224	83
250	248	312	284	304	120	315	78
315	313	377	349	369	150	355	78
400	398	472	444	464	170	450	73

REGELUNGSARTEN

a) Manuelle Regelung in alle Richtungen



b) Regelung durch einen Elektromotor für einen selbständigen Einbau

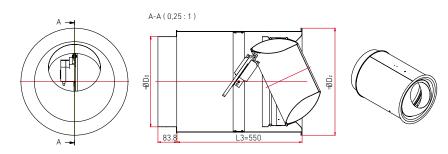
B4 Elektromotor NM 24 B5 Elektromotor NM 230 B6 Elektromotr NM 24 SR

Mögliche Ausführungen: D, K oder E. Die Abmessung L3 beträgt für alle Größen 250 mm.

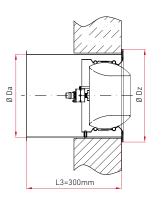
LUFTAUSLÄSSE SEITE 11:

c) Regelung durch einen Elektromotor mit Innenantrieb

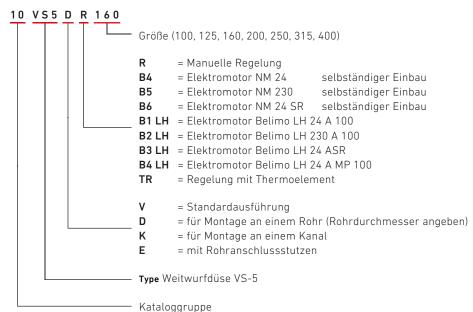
B1 LH Elektromotor Belimo LH 24A 100 B2 LH Elektromotor Belimo LH 230A 100 B3 LH Elektromotor Belimo LH 24A SR B4 LH Elektromotor Belimo LH 24A MP 100

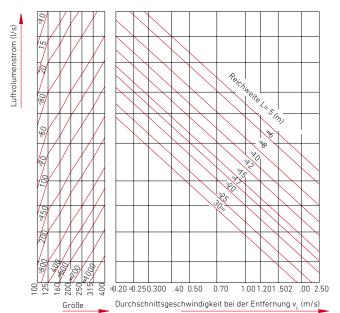

Mögliche Ausführungen: D, K oder E. Die Abmessung L3 beträgt für alle Größen 550 mm. Mögliche Größen der Ausführung: 160, 200, 315, 400.

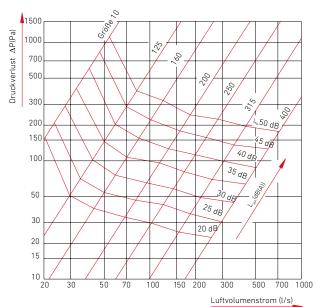
d) Thermostatische Regelung


Mögliche Ausführungen: D, K oder E. Die Abmessung L3 beträgt für alle Größen 333 mm. Mögliche Größen der Ausführung: 200, 250, 315, 400.

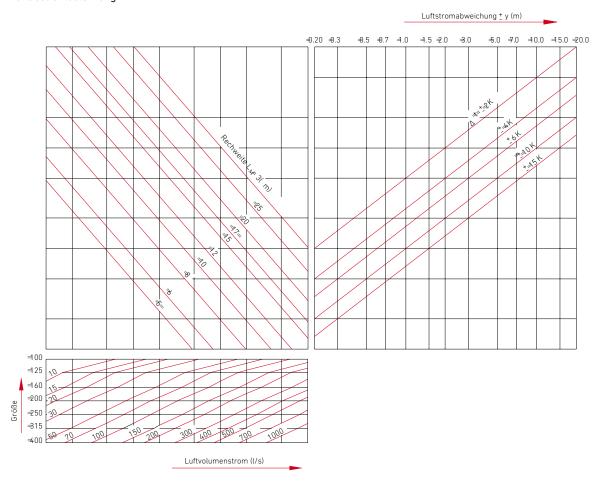
Vorteile:


- Automatische Regelung mit einem Thermostaten
- Erfordert keinen Motor oder Installation für die Motostromversorgung und Steuerung


ARTIKELSCHLÜSSEL



TECHNISCHE DATEN (GELTEND FÜR ALLE WEITWURFDÜSEN DER TYPE VS-5)


Geschwindikeit in der Strahlmitte und Reichweite

Druckabfälle und Geräuschpegel

Luftabstrahlablenkung

Notizen

Notizen

Ihr Partner/Installateur:

Für den Inhalt verantwortlich: J. Pichler Gesellschaft m.b.H.
Fotos: J. Pichler Gesellschaft m.b.H. | Text: J. Pichler Gesellschaft m.b.H.
Alle Rechte vorbehalten | Alle Fotos Symbolfotos | Änderungen vorbehalten | Version: 04/2023 eh/db

J. PICHLER Gesellschaft m.b.H.

office@pichlerluft.at www.pichlerluft.at ÖSTERREICH 9021 KLAGENFURT AM WÖRTHERSEE

Karlweg 5 T +43 (0)463 32769 F +43 (0)463 37548 ÖSTERREICH 1100 WIEN Doerenkampgasse 5 T +43 (0)1 6880988 F +43 (0)1 6880988-13

Vertriebsniederlassungen in Deutschland, Slowenien, Serbien und Bosnien. Vertriebspartner in Europa.